МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

Казахский национальный исследовательский технический университет имени К.И. Сатпаева

Институт архитектуры, строительства и энергетики им. Т.К. Басенова

Кафедра Инженерные системы и сети

допущен к защите

Заведующий кафедрой Инжелерные системы и сети канд техн маук, ассоц. проф.

-Алимова К.К 2019 г.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к дипломному проекту

На тему: "Использование сорбционных материалов в водоподготовке города Степногорск"

по специальности 5В080500 – Водные ресурсы и водопользование

Выполнила

Саиткеримова К.Р.

Научный руководитель канд. техн. наук ассоц. проф.

Сидорова Н.В

<u>иая</u> 2019 г.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

Казахский национальный исследовательский технический университет имени К.И. Сатпаева

Институт архитектуры, строительства и энергетики им. Т.К. Басенова Кафедра Инженерные системы и сети

Саиткеримова Камила Рахимжановна

Использование сорбционных материалов в водоподготовке города Степногорск

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к дипломному проекту

Специальность 5В080500 – Водные ресурсы и водопользование

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

Казахский национальный исследовательский технический университет имени К.И. Сатпаева

Институт архитектуры, строительства и энергетики им. Т.К. Басенова

Кафедра Инженерные системы и сети

5В080500-Водные ресурсы и водопользование

допущен к защите

Заведующий кафедрой Инженерные системы и сети канд техн наук, ассоц. проф.

_ Алимова К.К 2019 г.

ЗАДАНИЕ на выполнение дипломного проекта

Обучающейся <u>Саиткеримовой Камиле Рахимжановне</u>
Тема: <u>Использование сорбционных материалов в водоподготовке города Степнгорск</u>
Утверждена приказом Ректора Университета №1210- 6 от "30" 10 2019г.
Срок сдачи законченной работы "30" апреля 2019 г.
Исходные данные к дипломному проекту: <u>характеристика города Степногорск, численность населения, источник водоснабжения</u>
Перечень подлежащих разработке в дипломной работе вопросов:
а) выбор и расчет технологической схемы для очистки питьевой воды;
в) расчет и проектирование основных очистных сооружений;
г) определение технико-экономической части
Перечень графического материала: представлены 4 чертежей, 10 слайдов презентации работы
Рекомендуемая основная литература: <u>из 10 наименований</u>

ГРАФИК подготовки дипломного проекта

Наименование разделов, перечень разрабатываемых вопросов	Сроки представления руководителю	Примечание
Технологическая часть	12.02.2019 г 30.03.2019 г.	Выполнено
Технология строительства объектов водопользования	01.02.2019 г 16.04.2019 г.	выполнено
Экономическая часть	16.04.2019 г. – 30.04.2019 г.	выполнень

Подписи

консультантов и нормоконтролера на законченную дипломную работу с указанием относящихся к ним разделов работы

Наименование разделов	Консультанты, И.О.Ф. (уч. степень, звание)	Дата подпи- сания	Подпись
Технология строитель- ства объектов водо- пользования	Н.В. Сидорова, канд. техн. наук, ассоц. профессор	17.05.19	The-
Экономическая часть	Н.В. Сидорова, канд. техн. наук, ассоц. профессор	17.05.19	Me
Нормоконтролер	А.Н. Хойшиев, канд. техн. наук, лектор	16.05.19	Sof

Научный руководитель

_Сидорова Н.В.

Задание принял к исполнению обучающаяся

Саиткеримова К.Р.

Дата

"<u>17" мал</u> 2019 г.

АНДАТПА

Диссертациялық жұмыс сумен жабдықтау қондырғысының сипаттамаларына, климаттық жағдайға, қаланың сумен жабдықтау көздеріне, халыққа, есептерге және су тазарту құрылыстарын анықтауға қатысты. «Степногорск қаласының суды тазарту кезіндегі сорбциялық материалдарды пайдалану» диссертациясы үш негізгі бөліктен тұрады: технологиялық секция; жұмыстары технологиялық құрылыс және монтаж және техникалыкэкономикалық негіздеме.

Диссертацияның мақсаты ерітілген қоспалардан, ауыр металдардан және микроорганизмдерден ауыз суды тазарту үшін сорбциялық материалдарды қолдану болып табылады.

АННОТАЦИЯ

В дипломной работе рассматривается характеристика объекта водоснабжения, климатические условия, источник водоснабжения города, население, расчеты и определение водоочистных сооружений. Дипломная работа «Использование сорбционных материалов в водоподготовке города Степногорск» состоит из трех основных разделов: технологического раздела; технологии строительно-монтажных работ и технико-экономического анализа.

Цель дипломной работы является использование сорбционных материалов для очистки питьевой воды от растворенных примесей, тяжелых металлов, и микроорганизмов.

ABSTRACT

The thesis deals with the characteristics of the water supply facility, climatic conditions, the source of the city's water supply, population, calculations and the definition of water treatment facilities. The thesis "The use of sorption materials in the water treatment of the city of Stepnogorsk" consists of three main sections: technological section; technology construction and installation work and feasibility analysis.

The aim of the thesis is the use of sorption materials for the purification of drinking water from dissolved impurities, heavy metals, and microorganisms.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	7
1 Технологическая часть	8
1.1 Краткая характеристика объекта водоснабжения	8
1.2 Природно-климатические и физико-географические условия райог	на 9
1.3 Социально-экономическое развитие города Степногорск	9
1.4 Расчет и проектирование водопроводной сети. Определение расхо	да
воды на хозяйственно-питьевые нужды города Степногорск	10
1.5Очистные сооружения. Разработка и обоснование технологической	Í
схемы очистных сооружений	12
1.6 Первая стадия ультрафильтрации на установках AQUAPORE-UF	14
1.7 Вторая стадия ультрафильтрации на установках AQUAPORE-MB	14
1.8Описание технологической линии двух стадийной ультрафильтра	щи-
онной очистки воды	15
1.9 Дозирование коагулянта	15
1.10 Грубая очистка	16
1.11 Первая стадия ультрафильтрационной очистки исходной воды	17
1.12 Вторая стадия ультрафильтрационной очистки промывных вод н	вто-
рой степени	17
1.13 Хлорирование очищенной воды	18
1.14 Определение производительности очистных сооружений	17
1.15 Расчет фильтра грубой очистки	18
1.16 Эксплуатационные расходы технологической линии по реагента	19
1.17 Вычисление площадей складов	19
1.18 Определение резервуара чистой воды	22
2 Технология строительства объектов водопользования	24
2.1 Земляные работы	24
2.2 Определение объема земляных работ	24
2.3 Расчет временных зданий	26
3 Экономическая часть	27
3.1 Определение стоимости строительства	28
3.2 Срок окупаемости станции водоподготовки	29
ЗАКЛЮЧЕНИЕ	30
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	31
ПРИЛОЖЕНИЯ	32

ВВЕДЕНИЕ

Одна из самых высокоэффективных методов глубокой очистки является сорбционная очистка воды. Этот метод основан на том, что устраняет вредные химические соединения и примеси за счет того, что частицы соприкасаются между собой из-за молекулярной силы взаимодействия. Актуальность данного метода заключается в том, что с помощью сорбционных материалов можно очистить воду от различных органических веществ, которые не удалялись с помощью других методов. Сорбционную обработку природной воды используют для удаления растворенных примесей, тяжелых металлов, микроорганизмов и другие.

Основная цель дипломной работы заключается в том, чтобы использовать сорбционные материалы для очистки питьевой воды от растворенных примесей, тяжелых металлов и микроорганизмов. В соответствии с поставленной целью необходимо решить следующие задачи:

- расчет хозяйственно- питьевых расходов воды;
- выбор технологической схемы для очистки питьевой воды;
- определение расчетной производительности очистных сооружений;
- расчет и проектирование основных очистных сооружений;
- расчет технико-экономического анализа

Система водоснабжения обязана соответствовать требованиям народной, коммерческой и промышленной деятельности. Необходимо чтобы вода отвечала всем качественным и количественным требованиям. Водопроводная сеть запроектирована с учетом требуемой надежности водообеспечения потребителей.

1 Технологическая часть

1.1 Краткая характеристика объекта водоснабжения

Город Степногорск основан в 1963 г, расположен в 270 км от областного центра Акмолинской области – города Кокшетау и в 190 км от города Астаны – столицы Республики Казахстан. С 2018-2019 года численность населения города составляет 48562 человек. Город Степногорск является одним из крупных промышленных центров Акмолинской области. В городе размещены АО «Степногорский горно-химический комбинат», АО «Степногорский подшипниковый завод горного оборудования», всего имеется 59 предприятий и производств, в том числе:

- крупных промышленных предприятий 14;
- малых промышленных предприятий 29;
- подсобных производств 16.

Основные реки, протекающие на территории города, является Селеты и Аксу. Река Селеты расположена в 52 км от города Степногорск и относится к бассейну реки Иртыш. Данная река Селеты является одним источником водоснабжения для города Степногорск. Характеристика реки Селекты:

- -длина составляет 407 км;
- -площадь водосбора оставляет 18,5 тыс. м^2 ;
- -питание реки снеговое;
- -толщина льда составляет 130 см;
- -селетинское водохранилище.

Рядом с городом протекает река Аксу, которая является мелкой степной речкой, текущая в сторону Прииртышской равнины. В настоящее время из-за искусственных запруд, в ней нет стока воды, поэтому реку не используют для дальнейшего водоснабжения города Степногорск.

Грунтовые воды появляются на глубине 2,2-3,7м. Водовмещающими грунтами являются: включения, карманы и прослои дресвы и щебня в толще глины и пески средней крупности. Питание грунтовых вод осуществляется за счет атмосферных осадков и конденсации поровой влаги в гнездах и прослоях дресвы и щебня.

1.2 Природно-климатические и физико-географические условия района

Город Степногорск - административный, промышленный и культурный центр, в региональном плане Акмолинской области. Климатическая характеристика района дается по климатическим показателям СНиП РК 2.04.01-2010 «Строительная климатология». По строительно-климатическому районирова-

нию город Степногорск относится к подрайону - IB. Климат района резко континентальный, с засушливым жарким летом, и холодной малоснежной зимой.

В районе города преобладают ветры юго-западного направления. В период ноябрь-март они являются господствующими. К лету увеличивается повторяемость ветров западных, северо-западных и северных направлений и в июле устанавливается равновесие, когда повторяемость ветров по всем направлениям примерно одинакова. Зима холодная, малоснежная, с преобладанием пасмурной погоды и устойчивыми морозами. Температуры воздуха: днем до -17°C, ночью до минус 23°C. Толщина снежного покрова — 0,48 м..Температура воздуха весной: днем до 5°C, до 16°C. Температура воздуха летом: днем до 23°C, ночью до 13°C. Наибольшее количество осадков выпадает в июле равное 55 мм. Осенью преобладает пасмурная погода с моросящими дождями. С середины сентября по ночам начинаются заморозки, в конце октября начинаются снегопады.

Нормативная глубина сезонного промерзания грунтов равна 2,05 м. По характеру рельефа можно подразделить на 3 основные части:

- -северо-западную равнинную;
- -юго-западную равнинную с отдельными холмами;
- -восточную возвышенную часть Казахской складчатой страны.

Северо-западная часть формирует равнинное плато, юго-западной часть простирается высокая равнина, а для восточной части характерно холмы, увалы. Наиболее высокие холмы сложены обычно гранитами, а островерхие холмы, как правило, - кварцитами.

Почвенно-растительный покров характеризуется степями и полупустынями. Наибольшую часть города Степногорск расположена на тёмно-каштановых почвах.

1.3 Социально-экономическое развитие города Степногорск

В структуре Акмолинской области объём производства по городу Степногорск за 2018 г составил 16,7 %. За 2017 год объём промышленного производства составил 91,1 млрд. тенге, или 103,4 % к 2016 году. Индекс физического объёма - 87,8 %. В таблице 1 приведены результаты производства основных видов продукции за 2018 год.

Таблица 1 - Производство основных видов продукции за 2018 год

Виды продукции	Количество производимой продукции в					
	тыс.т./ год					
подшипники	16,1					
золото	2,2					
уран	1967					

Продолжение таблицы 1

Виды продукции	Количество производимой продукции в
	тыс.т./ год
серная кислота	134
пестициды	6,1
зимнее дизельное топливо	33,7
спирт	3,2

1.4 Расчет и проектирование водопроводной сети. Определение расхода воды на хозяйственно-питьевые нужды города Степногорск

При определении расходов воды на хозяйственно-питьевые нужды населения города необходимо определить количество населения города N, чел.

$$N = F \cdot P, \tag{1}$$

где F –площадь территории, равная 11036га;

Р – плотность населения, равное 4,4чел./га.

$$N = 11036 \cdot 4.4 = 48562$$
 чел.

По формуле определяем среднесуточный расход воды на хозяйственнопитьевые нужды в населенном пункте, $Q_{\text{сут.ср.}}$ м³/сут

$$Q_{\text{cp.cyt.}} = \frac{q_{\text{m}} \cdot N_{\text{m}}}{1000}, \tag{2}$$

где N –численностьнаселения, равная 48562 чел.;

 $q_{\tt w}$ – норма водопотребления, принимается по таблице A.1.

$$Q_{\text{cp.cyt.}} = \frac{250 \cdot 48562}{1000} = 12140,5 \text{ m}^3/\text{cyt}$$

Расчетные расходы воды при наибольшем и наименьшем водопотреблении определяют по формуле, ${\rm M}^3/{\rm cyr}$

$$Q_{\text{cyr.max}} = K_{\text{cyr.max}} \cdot Q_{\text{cp.cyr.}}, \tag{3}$$

где $K_{\text{сут.max}}$ - коэффициент суточной неравномерности при максимальном водопотребления, равный $1,1 \div 1,3$;

 $Q_{\rm cp. cyr.}$ -среднесуточный расход воды в сутки, равный 12140,5 ${
m m}^3/{
m cyr.}$

$$Q_{\text{cyt.min}} = K_{\text{cyt.min}} \cdot Q_{\text{cp.cyt.}}, \tag{4}$$

где $K_{\text{сут.min}}$ - коэффициент суточной неравномерности при минимальном водопотребления, равный $0.7 \div 0.9$.

$$Q_{cvr.max} = 1,2.12140,5 = 14568 \text{ m}^3/\text{cyr},$$

$$Q_{cvr.min} = 0.8 \cdot 12140.5 = 9712.4 \text{ m}^3/\text{cyr}.$$

Расчетные часовые расходы воды определяем по формуле

$$q_{\text{u.max}} = K_{\text{u.max}} \cdot \frac{Q_{\text{cyr.max}}}{24}, \tag{5}$$

где $q_{\text{ч.max}}$ - расчетные часовые расходы воды при наибольшего водопотребления;

 $Q_{\text{сут.max}}$ - коэффициент суточной неравномерности при максимальном водопотребления, равный 14568 м 3 /сут.

$$q_{\text{u.min}} = K_{\text{u.min}} \cdot \frac{Q_{\text{cyr.min}}}{24}, \qquad (6)$$

где $Q_{\text{сут.min}}$ -коэффициент суточной неравномерности при минимальном водопотребления, равный 9712,4 м 3 /сут.

Для нахождения расчетного часового расхода воды, необходимо определить коэффициенты часового неравномерности $K_{\text{ч.max}}$ и $K_{\text{ч.min}}$

$$K_{y,max} = \alpha_{max} \cdot \beta_{max}, \qquad (7)$$

где α_{max} - коэффициент, учитывающий степень благоустройства зданий, равный $1,2\div 1,4;$

 β_{max} - коэффициент, учитывающий число жителей в населенном пункте, принимаемый в таблице A.2.

$$K_{\text{u.max}} = 1,3 \cdot 1,15 = 1,49$$

$$K_{\text{u.min}} = \alpha_{\text{min}} \cdot \beta_{\text{min}}, \qquad (8)$$

где α_{min} - коэффициент, учитывающий степень благоустройства зданий, равный $0,4\div0,6;$

 β_{min} -коэффициент, учитывающий число жителей в населенном пункте, принимаемый в таблице A.2.

$$K_{\text{u.min}} = 0.6 \cdot 0.2 = 0.12.$$

Полученные значения подставляем в формулы (5) и (6)

$$q_{\text{u.max}} = \frac{1,49 \cdot 14568}{24} = 904,43 \text{ m}^3/\text{u.,}$$

$$q_{\text{u.min}} = \frac{0.12 \cdot 9712.4}{24} = 48.6 \text{ m}^3/\text{u}.$$

1.5 Очистные сооружения. Разработка и обоснование технологической схемы очистных сооружений

Метод обработки воды и состав очистных сооружений устанавливается в зависимости от качества воды в источнике водоснабжения, производительности станции, а также на основании данных технологических исследований и эксплуатации сооружений. Использование традиционной очистки воды для поверхностных источников данного района не обеспечивает требуемой эффективности очистки, что особенно заметно в паводковый период и в период цветения воды.

Современным и альтернативым способам очистки питьевой воды является технология ультрафильтрации, которая на сегодняшний день является самой эффективной технологией для получения высококачественной питьевой воды из поверхностных источников водоснабжения. С учетом того, исходная вода подается от водозаборных сооружений на Селетинском водохранилище, которая расположена на расстоянии 50 км от станции водоочистки, повышение выхода очищенной воды позволит сократить потребление исходной воды и электроэнергии на 15-20%. Основные преимущества мембранной технологии ультрафильтрации в сравнении с традиционной технологией гравитационной фильтрации на фильтрах засыпного типа приведены в таблице 2.

Таблица 2 -Основные преимущества мембранной технологии ультрафильтрации в сравнении с традиционной технологией гравитационной фильтрации на фильтрах засыпного типа

Параметры оценки эффективности технологии	Ультрафильтрация с предварительной микрофлок- куляцией	Традиционная технология
Диапазон фильтрации	0.02мкм	Песчаные фильтры характеризуются неоднородностью пор; не гарантирует полного задержания загрязнений
Мутность	Гарантируется <0.1мг/л вне зависимости от мут- ности исходной воды	Не гарантируется. Зависит от мутности исходной воды
Бактерии	99.9999% без предвари- тельного хлорирования	Не эффективно без предвари- тельного хлорирования
Вирусы	99.9999%	Не эффективно без предвари- тельного хлорирования
Цисты	99.9999%	Не эффективна. Цисты имеют высокую устойчивость к хлору.
Паразиты	99.9999%	Не эффективна. Паразиты имеют высокую устойчивость к хлору.
Очистка от растворенных в органических веществ при предварительной коагуляции	50 – 75%	10-25%
Минимальное время контакта исходной воды с коагулянтом	30 c.	30-60 мин
Количество остаточного коагулянта в пересчете на содержание металла (Fe/Al)	≤1%	до 10%
Цветность при дозировании минерального коагулянта	50- 95%	25-50%
Запах при дозировании минерального коагулянта	Полное удаление запахов	Не эффективно без предвари- тельного хлорирования
Экономия реагентов коагуляции	до 25-50%	-
Объем воды расходуемый на обратную промывку	3-5%	5-25%

Продолжение таблицы 2

Параметры оценки эффективности технологии	Ультрафильтрация с предварительной микрофлок- куляцией	Традиционная технология
Использование 2-й стадии для очистки промывных вод 1-й ступени	Да	Нет
Очистка от растворенных в органических веществ при предварительной коагуляции	50 – 75%	10-25%
Минимальное время контакта исходной воды с коагулянтом	30 c.	30-60 мин
Количество остаточного коагулянта в пересчете на содержание металла (Fe/Al)	≤1%	до 10%
Цветность при дозировании минерального коагулянта	50- 95%	25-50%
Запах при дозировании минерального коагулянта	Полное удаление запахов	Не эффективно без предвари- тельного хлорирования
Экономия реагентов коагуляции	до 25-50%	-
Объем воды расходуемый на обратную промывку	3-5%	5-25%
Использование 2-й стадии для очистки промывных вод 1-й ступени	Да	Нет

1.6 Первая стадия ультрафильтрации на установках AQUAPORE-UF

В установках ультрафильтрации первой стадии ултрафильтрации «AQUAPORE-UF» используется напорный мембранный модуль dizzer XL Multibore0.9® с площадь фильтрации 70 м 2 с половолоконными многоканальными мембранами с диаметром полого канала 0.9 мм. $\theta = 50-150$ л.м 2 /ч. Мембранный модуль состоит из многоканального половолоконного мембранного волокна, что обеспечивает его высокую прочность на разрыв. Корпус модуля рассчитан на давление до 5 Бар, при этом максимальное рабочее давление при обратной промывке составляет 3 Бар. Основные особенности машин ультрафильтрации AQUAPORE-UF:

- количество устанавливаемых модулей от 4 до 80штук;
- удобное расположение позволяет производить их замену в течение нескольких минут;
- позволяет сократить необходимые размещения производственные площади на 25-50%;
- низкое гидродинамическое сопротивление трубопроводов и арматуры машины снижает энергопотребление и повышает надежность системы.

1.7 Вторая стадия ультрафильтрации на установках AQUAPORE-MB

В установках ультрафильтрации второй стадии «AQUAPORE-UF» используется погружной мембранный модуль MicroClear MB с площадь фильтрации от 200 до 1400 м² с плоскими кассетными мембранами. Мембранный модуль состоит из пластинчатых кассет с плоскими мембранами, которые можно очищать обратной промывкой. Материал мембраны обеспечивает его высокую химическую инертность, что обуславливает возможность применения для его очистки минеральных кислот (до рН 1), щелочей (до рН 13). Основные особенности машин ультрафильтрации AQUAPORE-MBR:

- возможность обратной промывки позволяет поддерживать высокую удельную скорость фильтрации при большой концентрации взвешенных веществ в исходной воде;
- высокоэффективная система аэрации для очистки мембран, позволяет снизить частоту проведения химической очистки мембран.

1.8 Описание технологической линии двух стадийной ультрафильтрационной очистки воды

Технологическая линия двух стадийной ультрафильтрационной очистки воды включает следующие этапы:

- дозирование коагулянта;
- грубая фильтрация;
- первая стадия ультрафильтрационной очистки исходной воды;
- вторая стадия ультрафильтрационной очистки промывных вод первой ступени;
 - хлорирование очищенной воды.

1.9 Дозирование коагулянта

Дозирование ведут в 2 параллельных трубопровода исходной воды, каждый из которых может быть рабочей или резервной линией подачи исходной воды на технологическую линию. За точками дозирования коагулянта в 2 трубопровода исходной воды установлены статические миксеры, которые предназначены для смешивания коагулянта во всем объеме исходной воды. Из распределительного колодца исходная вода по двум параллельным трубопроводам поступает в технологическое помещение. Трубопроводы исходной воды объединяются на всасывающем коллекторе повысительной насосной станции PS1. Для завершения процесса коагуляции до ультрафильтрации минимальное контактное время коагулянта с исходной водой составляет 30 с. Этот процесс называется микрофлоккуляцией, так как за 30 с. после добавления коагулянта в исходной воде образуются микрофлоккулы размером от 0,5-10 микрон.

Минеральный коагулянт - раствор $FeCl_3$ с содержанием хлорного железа 30-40% поступает со станции дозирования коагулянта из технологического помещения по четырем пластиковым трубопроводам. Трубопроводы проложены в грунте на глубине 3,20метра ниже глубины промерзания. Дозирование коагулянта полностью автоматизировано и пропорционально расходу исходной воды.

1.10 Грубая фильтрация

После коагуляции и повышения давления на насосной станции PS-1 с 0.5 до 1.5бар исходная вода поступает на блок автоматических грубых фильтров, которые обеспечивают номинальное фильтрование до 250 мкм. Номинальный рейтинг фильтрации 250 мк обусловлен необходимостью защиты мембранных модулей ультрафильтрации от крупных механических примесей. Автоматическая промывка фильтра контролируется через микропроцессорный контроллер по перепаду давления или по таймеру. При обратной промывке основной поток воды не прерывается. T = 20 с., V = 480 л., $Q_{пром.вода} = 24$ л/с. Промывка составит 1-2 раза в сутки.

1.11 Первая стадия ультрафильтрационной очистки исходной воды

После грубой фильтрации очищаемая вода без крупных механических примесей подается на 5 установок ультрафильтрации AQUAPOREUF первой стадии. На каждой установке AQUAPORE UF установлено 72 мембранных модуля dizzer XL Multibore $0.9^{\text{®}}$ с S = 5040 m^2 . Обратная промывка осуществляется при помощи насосной станции PS-2. Для обратной промывки используется фильтрат установок AQUAPOREUF. На основании пилотных испытаний

оптимальная продолжительность обратной промывки составляет 35-45 с., θ = 230 л/м²/ч. Усиленная обратная промывка отличается тем, что для усиления очистки в воду обратной промывки дозируются различные реагенты. Добавление кислоты HCl 32% в воду обратной промывки до рН 2,0-2,5 усиливает очистку мембран от минеральных загрязнений, таких как карбонаты кальция и магния, соли алюминия и железа. Добавление каустика NaOH 32% в воду обратной промывки до рН 12,0-12,5 усиливает очистку мембран от органических загрязнений. Для дозирования реагентов усиленной обратной промывки используется станции дозирования СЕВ-1, СЕВ-2 и СЕВ-3. После усиленной обратной промывки проводится замачивание мембран в реагенте 15-10мин., затем обратная промывка без добавления реагентов. Промывочная вода обратной промывки с установок AQUAPOREUF направляется в емкость нейтрализации TANK-NEIT, в которой кислые стоки нейтрализуются щелочными стоками до нейтральной рН 6,0-9,0. В результате нейтрализации соляной кислоты и гидроокиси натрия образуется хлорид натрия:

$$HCl + NaOH = NaCl + H_2O$$

Промывная вода усиленной обратной промывки через общий дренажный трубопровод сбрасывается в озеро накопитель промывных вод. Очищенная вода первой стадии от пяти установок через коллектор направляется по трубопроводу очищенной воды проходит узел дозирования гипохлорита и направляется в емкости хранения питьевой воды.

1.12 Вторая стадия ультрафильтрационной очистки промывных вод первой ступени

Промывная вода обратной промывки первой ступени ультрафильтрации поступают на вторую ступень ультрафильтрации, которая состоит из двух систем ультрафильтрации AQUAPORE MBR с погружными ультрафильтрационными модулями и двух мембранных емкостей. В воду, поступающую на вторую ступень, дозируется коагулянт хлорное железо 3.0 мг/л. На каждой установке установлено по $2 \text{ мембранных модуля MicroClear MB c S} = 1200 \text{ м}^2$.

Для очистки мембран установки AQUAPORE MBR используется сочетание поверхности мембран и обратной промывки. Аэрация мембран производится непрерывно в процессе фильтрации при помощи кольцевых лопастных воздуходувок AQUAPORE MBR. Обратная промывка мембран установки AQUAPORE MBR проводится 1-2 раза в сутки в сочетании с дезинфекцией мембран гипохлоритом натрия. Для дезинфекции и очистки мембран в воду обратной промывки дозируется гипохлорит натрия до концентрации 50мг/активного хлора. Промывная вода остается в мембранном бассейне.

1.13 Хлорирование очищенной воды

Для обеспечения требуемых микробиологических показателей питьевой воды в процессе хранения и распределения воды по сетям очищенную воду хлорируют с использованием гипохлорита натрия. Для хлорирования воды используют готовый раствор гипохлорита натрия NaClO 14%, Для эффективного перемешивания гипохлорита натрия во всем объеме воды сразу после точки дозирования гипохлорита установлен статический миксер. Концентрация активного хлора постоянно контролируется при помощи датчика активного хлора, который установлен после статического миксера. Концентрация дозируемого гипохлорита по активному хлору может быть задана в диапазоне от 0.01 до 0.3 мг/л. После дозирования гипохлорита натрия питьевая вода направляется в резервуары очищенной воды.

1.14 Определение производительности очистных сооружений

Расчетную производительность станции определяется по формуле, ${\rm m}^3/{\rm cyr}$

$$Q_{\text{расч}} = \alpha \cdot Q_{\text{полз}} + Q_{\text{доп}}, \tag{9}$$

где α — коэффициент учитывающий расход воды на собственные нужды, принимаемый 1.1;

 $Q_{\text{полз}}$ -полезная производительность станции м³/сут; $Q_{\text{лоп}}$ - дополнительный расход воды на пожаротушение м³/сут.

Дополнительный расход воды на пожаротушение, м³/сут

$$Q_{\text{доп}} = \frac{3.6 \cdot 24 \cdot n \cdot q_{\text{пож}} \cdot t_{\text{пож}}}{T_{\text{пож}}},$$
(10)

где п- число пожаров, равное 2;

q- норма расхода воды при пожаре, равное 30 л/с;

 $t_{\text{пож}}$ - расчетная длительность пожара, равное 3ч.;

 $T_{\text{пож}}$ -время восстановления пожарного запаса, равное 24 ч.

$$Q_{\text{доп}} = \frac{3.6 \cdot 24 \cdot 2 \cdot 30 \cdot 3}{24} = 648 \text{ м}^3/\text{сут,}$$

$$Q_{\text{расч}} = 1,1 \cdot 57000 + 648 = 63348 \text{ м}^3/\text{сут} = 2640 \text{ м}^3/\text{ч}.$$

1.15 Расчет фильтра грубой очистки

Общая площадь фильтрования определяется по формуле, ${\rm m}^2$

$$F = \frac{Q \cdot \alpha}{\omega_{H}},\tag{11}$$

где Q - производительность фильтра по осветленной воде, 5 м 3 /ч.;

 α - коэффициент, учитывающий расход осветленной воды на промывку, равный 1.03;

 $\omega_{\text{н}}$ — скорость фильтрования при нормальном режиме работы фильтра, равный 10 м/ч.

$$F = \frac{5 \cdot 1,03}{10} = 0,5 \text{ m}^2.$$

Скорость фильтрования при нормальном режиме работы фильтров определяется по формуле, м/с

$$\omega_{\rm H} = \frac{Q+q}{f},\tag{12}$$

где q — среднечасовой расход воды на промывку фильтра, m^3/q .; f — площадь фильтрования стандартного фильтра, m^2 .

Среднечасовой расход воды на промывку определяется по формуле, ${\rm m}^3/{\rm q}$.

$$q = \frac{d \cdot r}{24},\tag{13}$$

где d – расход воды на одну промывку фильтра, M^3 ;

r — число промывок в сутки.

Расход воды на одну промывку фильтра определяется по формуле, м³

$$d = \frac{i \cdot 60t \cdot f}{1000},\tag{14}$$

где i – интенсивность взрыхления, равный 10 л/c·м^2 ;

t – продолжительность взрыхляющей промывки, равный 20 ч.

$$d = \frac{10.60.20.0.41}{1000} = 4,92 \text{ m}^3,$$

$$q = \frac{4,92 \cdot 1}{24} = 0,2 \text{ m}^3/\text{ч},$$

$$\omega_{\rm H} = \frac{5+0.2}{0.41} = 13 \text{ M/Y}.$$

1.16 Эксплуатационные расходы технологической линии по реагентам

Дозу коагулянта определяется по двум параметрам: цветности и мутности. Дозу коагулянтов применяется в формуле, мг/л

где Ц- цветность воды, равное 40

$$Д_{\kappa} = 4\sqrt{40} = 28 \text{ мг/л}.$$

В качестве коагулянта принимаем хлорид железа $FeCl_3$. Реагенты для подщелачивания вводятся одновременно с вводом коагулянта. Необходимость подщелачивания проверяют по формуле

где Д_к- максимальная в период подщелачивания доза безводного коагулянта, равная 35 мг/л;

 e_{κ} - эквивалентный вес коагулянта для FeCl $_3$ ·18H $_2$ O, равный 54 мг/мг-экв;

 $K_{\text{ш}}$ - коэффициент, равный для извести 28;

Що- максимальная щелочность воды, равный 1,5 мг-экв/л.

1.17 Вычисление площадей складов

Склады для хранения реагентов следует располагать вблизи помещения для приготовления растворов. Площадь склада для коагулянтов, m^2

$$F_{CKJ} = \frac{Q_{CYT} J_K T \alpha}{1000 p_C y_C h_V}, \tag{17}$$

где Т- время хранения, равное 30 дней;

 α - коэффициент учета дополнительной площади для хранения, равный 1,15;

 p_c - содержание безводного продукта в коагулянте, равный 40 %; γ - объемный вес коагулянта, равный 1,1 т/м³.

$$F_{c\kappa\pi} = \frac{Q_{cyt} \mathcal{A}_{\kappa} T\alpha}{1000 p_c y_c h_k} = \frac{63348 \cdot 35 \cdot 30 \cdot 1,15}{1000 \cdot 40 \cdot 1,1 \cdot 2} = 869 \text{ m}^2,$$

$$F_{\text{СКЛ.Щ}} = \frac{63348 \cdot 2,8 \cdot 30 \cdot 1,15}{1000 \cdot 40 \cdot 1,1 \cdot 2} = 70 \text{ M}^2.$$

Емкость растворных баков для коагулянта, м³

$$w_{p} = \frac{\mathcal{A}_{\kappa} \cdot n \cdot Q}{10000 \cdot b_{1} \cdot j'} \tag{18}$$

где $Д_{\kappa}$ — максимальная доза безводного коагулянта, равное 45 г/м³;

n — число часов за которое заготовляется раствор, равный 10ч.;

Q — производительность станции, равное 2640 м³/ч.;

b₁ – концентрация раствора коагулянта, принимаемый 10%;

j — плотность раствора коагулянта, равный 1т/m^3 .

$$W_p = \frac{45 \cdot 10 \cdot 2640}{10000 \cdot 10 \cdot 1} = 24 \text{ m}^3,$$

$$W_{\text{p.iii}} = \frac{2,8\cdot10\cdot2640}{10000\cdot10\cdot1} = 2 \text{ m}^3.$$

Принимаем 4 растворных бака с объёмом 24 м 3 . Емкость расходных баков в м 3

$$W = \frac{W_p \cdot b_1}{b_2},\tag{19}$$

где b_2 -концентрация раствора коагулянта в расходных баках, равный 4%

$$W = \frac{24 \cdot 10}{4} = 9 \text{ m}^3,$$

$$W = \frac{2 \cdot 10}{4} = 5 \text{ m}^3.$$

Принимаем 4 растворных бака с объёмом 9 м 3 .Потребный часовой расход FeCl $_3$ M $_X$, кг/ч, определяется из выражения

$$M_{\rm X} = \frac{(\mathcal{I}_{\rm nepb.} + \mathcal{I}_{\rm Brop.}) \cdot Q_{\rm o.c.}}{1000},$$
 (20)

где $Д_{\text{перв.}}$ - первичное хлорирование, равное 5 мг/дм³; $Д_{\text{втор.}}$ - вторичное хлорирование, равное 3 мг/дм³;

 $Q_{o.c.}$ - производительность очистной станции, равный 2640 м 3 /ч.

$$M_X = \frac{(5+3)\cdot 2640}{1000} = 22 \text{ кг/ч} = 528 \text{ кг/сут}.$$

Соответственно месячная потребность в FeCl₃:

$$M_{\kappa} = 528 \cdot 30 = 1512 \text{ Kg.} = 1.5 \text{ T.}$$

Результаты расчетов среднемесячного потребления реагентов на технологическую схему очистки воды ультрафильтрации приведено в таблице 3

Таблица 3 – Расчет среднемесячного потребления реагентов

Наименование реагента	Среднемесячный расход,т.
Хлорное железо 40%	17,6
Гипохлорит натрия 12-14%	3,1
Каустик 50% (натр едкий)	0,37
Кислота соляная 35%	0,3
Пиросульфит натрия	0,025

1.18 Определение резервуаров чистой воды

Объем резервуары чистой воды находим из выражения, м³

$$W_{\text{B.6.}} = W_{\text{per.}} + W_{\text{пож}},$$
 (21)

где W_{per} - объем регулирующей емкости, равный 602,9 м 3 ;

 $W_{\text{пож.}}$ -неприкосновенный противопожарный запас воды в резервуаре, которой определяется, м 3

$$W_{\text{пож.}} = 0.6 \cdot (Q_{\text{pc}} + Q_{\text{п}}),$$
 (22)

где Q_{pc} - расчетный секундный расход воды из водопроводной сети, принимаемый $0,53\ \pi/c;$

 $Q_{\rm n}$ - расчетный расход воды на 10-ти минутную продолжительность тушения одного внутреннего и наружного пожаров, равный 315,8

$$W_{\text{пож.}} = 0,6 \cdot (0,53 + 315,8) = 190 \text{ м}^3$$

$$W_{\text{\tiny B.6.}} = 602,9 + 190 = 792,9 \text{ m}^3$$

Зная объем регулирующей емкости, то можно определить объем резервуара чистой воды. Объем резервуара чистой воды находится по формуле, м³:

$$W_{P.Y.B.} = W_{per.} + W_{now.} + W_{\phi},$$
 (23)

где $W_{\varphi.}$ – запас воды на промывку фильтров и другие собственные нужды очистной станции, который определяется по формуле, м³

$$W_{\phi} = (2 \div 10\%) \cdot Q_{\text{pacq.cyr}},$$
 (24)

где $W_{\text{пож.}}$ – объем пожарной емкости резервуара при трехчасовом запасе, вычисляется по формуле, м³

$$W_{\text{пож.}} = 3 \cdot Q_{\text{пож.}} + \sum Q_{\text{макс.}} - 3 \cdot Q_{1,}$$
 (25)

где $Q_{\text{макс.}}$ - максимальный хозяйственно-питьевой расход, равный 2640 м $^3/$ ч;

 Q_1 - количество воды, соответствующее графику работы насосов 1-го подъема, равный 1894,5;

 $Q_{\text{пож.}}$ -пожарный расход, принимаемый 180 м 3 /ч.

Тогда Qпож

$$Q_{\text{пож.}} = Q_1 + Q_2 + Q_3, \tag{26}$$

где Q_1 -расчетный расход воды на пожаротушение, принимаемый $10~\pi/c$; Q_2 - расход воды на наружное пожаротушение для зданий, равный $15~\pi/c$;

 Q_3 - расход воды на внутреннее пожаротушение, равный 10 л/c.

$$Q_{\text{пож.}} = 10 + 15 + 10 = 35 \text{ л/c},$$
 $W_{\text{пож.}} = 3.180 + 2640 - 3.1894,5 = 2503,5 \text{ м}^3,$
 $W_{\varphi} = 0.05.63348 = 3167.4 \text{ м}^3,$
 $W_{\text{PMB}} = 792.9 + 2503.5 + 3167.4 = 6063.8 \text{ м}^3.$

По расчетам выбирается два резервуара чистой воды с объемом 3000 м³.

2 Технология строительства объектов водопользования

Проектируемый водопровод входит в комплекс водоснабжения города Степногорск. Водопровод прокладывается вдоль проезжей части дороги. Грунт -суглинок. Общая протяженность водопровода 14000 метров.

2.1 Земляные работы

В состав земляных работ входят: разработка траншей, обратная засыпка грунта. Выбор машин для производства земляных работ зависит от вида грунта, рельефа местности, объема и глубины земляных выработок, а также условий выполнения работы. После снятия покрытия и подготовки проездов для землеройных машин уточняется распределением всех подземных сооружений, расположенных на пересечении трассы, вблизи и параллельно ей.

2.2 Определение объемов земляных работ

Определение глубины заложения траншеи, м

$$h = h_{\text{пром.гр}} + (0.2 \div 0.4) + d,$$
 (1)

где $h_{\text{пром.гр}}$ - глубина промерзания грунта, принимается в пределах 2,05 м;

0,2÷0,4 – изоляционный слой, м; d- диаметр водопровода, равный 0,53 м.

$$h = 2.05 + 0.3 + 0.53 + 0.2 = 3.08 \text{ M}.$$

Определение ширины траншеи по дну, м

$$b=2\cdot(0.3\div 1)+d,$$
 (2)

где 0,3 ÷1-зазоп для прохода рабочих, м.

$$b = 2 \cdot 1 + 0.53 = 2.53 \text{ M}.$$

Определение ширины траншеи по верху, м

$$B = b + 2 \cdot m \cdot h, \tag{3}$$

где т-коэффициент крутизны откоса, равное 0,67.

$$B = 2.53 + 2 \cdot 0.67 \cdot 3.08 = 6.66 \text{ M}.$$

Определение площади поперечного сечения траншеи, ${\rm m}^2$

$$F = \frac{B+b}{2} \cdot h, \tag{4}$$

$$F = \frac{6.66 + 2.53}{2} \cdot 3.08 = 14.16 \text{ m}^2.$$

Определение объема траншеи, ${\rm M}^3$

$$V = F \cdot l, \tag{5}$$

где 1 - длина участка трубы, м.

$$V = 14,16 \cdot 14000 = 198240 \text{ m}^3.$$

Определение объема трубы, м³

$$V_{\rm Tp} = \pi \cdot d \cdot l, \tag{6}$$

$$V_{Tp} = 3.14 \cdot 0.53 \cdot 14000 = 23299 \text{ m}^3.$$

Определение объема излишнего грунта, ${\rm m}^3$

$$V_{\text{изл.гр.}} = V - \frac{V_{\text{тр}}}{K_{0,p} + 0.05},$$
 (7)

где $K_{o.p.}$ - коэффициент остаточного разрыхления грунта, зависит от типа грунта.

$$V_{\text{изл.гр.}} = 198240 - \frac{23299}{1+0.05} = 176050 \text{ m}^3.$$

Определение объема обратной засыпки, м³

$$V_{\text{обр.з.}} = V - V_{\text{изл.гр.}}, \tag{8}$$

$$V_{\text{обр.3.}} = 198240 - 176050 = 22190 \text{ M}^3$$

Определение объема недобора грунта, м³

$$V_{\text{Hed.rp.}} = h_{\text{Hed.rp.}} \cdot b \cdot l, \tag{9}$$

где h_{нел.гр.}- 0,1

$$V_{\text{нед.гр.}} = 0.1 \cdot 2.53 \cdot 14000 = 3542 \text{ m}^3.$$

Определение площади поверхности среза грунта, м²

$$S = b \cdot l \cdot 1.05, \tag{10}$$

$$S = 2.53 \cdot 14000 \cdot 1.05 = 37191 \text{ m}^2.$$

Устройство основания не требует, так как грунт-суглинки. Перечень строительно-монтажных процессов, принимаемый в соответствии с технологической последовательностью выполнения работ и с параграфами единых норм и расценок, отображен в таблице Б.1.

2.3 Расчет временных зданий бытового и административного назначения

Расчет требуемой площади инвентарных зданий различной номенклатуры ведется по формуле, ${\rm M}^2$

$$S_{TD} = (0.7 \cdot N \cdot 0.1) \cdot 0.7 + (1.4 \cdot N \cdot 0.1) \cdot 0.3$$
 (12)

где 0,7и 1,4 - нормативные показатели площади соответственно для мужчин и женщин;

0,7 и 0,3- коэффициенты, учитывающие соответственно количество мужчин и женщин;

N- количество рабочих, 50 чел.

$$S_{\text{Tp}} = (0.7 \cdot 50 \cdot 0.1) \cdot 0.7 + (1.4 \cdot 50 \cdot 0.1) \cdot 0.3 = 4.55 \text{ m}^2.$$

На основании установленных расчетом площадей, пользуясь каталогом типовых временных зданий и сооружений, подбираются здания и сооружения в наибольшей степени, отвечающие тем или иным конкретным условиям.

3 Экономическая часть

3.1 Определение стоимости строительства

Стоимость строительства, состоит из сумм стоимости строительных материалов и стоимость выполнения строительных работ, определяется по формуле, тг

$$C_{cT} = C_{c.M} + C_{c.p}, \tag{1}$$

где $C_{\text{с.м}}$ — стоимость строительных материалов, которая отображена в таблице 4, тг;

 $C_{\text{c.p}}$ — стоимость выполнения строительных работ, которая отображена в таблице B.1, тг.

$$C_{ct} = 400602005 + 7091874 = 407693879 \ тг.$$

Таблица 4 - Стоимость строительных материалов

Наименование материала	Количество	Цена материала,			
	материала	TΓ.			
Стальные трубы	28 т.	24000000			
Железобетонные стеновые панели	67шт	353000000			
Бетон для фундамента	185,4 м ³	15608000			
Арматура для бетона	4,235 т	2429345			
Профнастил для кровельных работ	$1568,1 \text{ m}^2$	8067840			
Штукатурная сетка	1554 m^2	2000500			
Штукатурный раствор	63 m ³	958800			
Фасадная краска	171 кг	555110			
Итого		400602005			

3.2 Срок окупаемости станции водоподготовки

Срок окупаемости – период времени, необходимый для того, чтобы доходы, генерируемые инвестициями, покрыли затраты на инвестиции. Простой срок окупаемости вычисляется по формуле

$$T_{\text{OK}} = \frac{C_{\text{CT}}}{C_{\text{II}}},\tag{2}$$

где C_{II} – прибыль фильтровальной станции, тг/мес.

Прибыль фильтровальной станции, тенге в месяц, составит

$$C_{\Pi} = c_{\scriptscriptstyle B} \cdot Q_{\rm cp.cyr} \cdot 30, \tag{3}$$

где $c_{\scriptscriptstyle g}$ – стоимость воды, тг.

$$C_{\Pi} = 27 \cdot 12140,5 \cdot 30 = 9833805$$
 тг/мес,

$$T_{o\kappa} = \frac{408236102}{2155650} = 19$$
 Mec,

Срок окупаемости водоподготовки составит 1 год и 7 месяцев. А так же в таблице Б.2 представлены затраты на реагенты.

ЗАКЛЮЧЕНИЕ

В ходе выполнения данного дипломного проекта для достижения поставленной цели, были произведены необходимые расчеты для водоочистной станции города Степногорск. Для этого была определена расчетная производительность водоочистной станции. Обеспечение водой города осуществляется путем водозабора из Селетинского водохранилища с объёмом 200 млн. м³ воды. На основании показателей качества воды и полученной производительности очистной станции производится выбор технологической схемы очистки питьевой воды. Следовательно, был произведен расчет всех сооружений по технологической схемы и необходимых доз реагентов. Так же было определена доза щелочи, что составило $Д_{\text{m}} > 0$, поэтому подщелачивание потребовалось.

Исходя из расчетов было установлено, что для очистки питьевой воды от растворенных примесей, тяжелых металлов и микроорганизмов необходимо использовать ультрафильтрационную установку. В эксплуатацию принято 5 ультрофильтрационных установок, состоящих из двух стадии очистки воды. Также произведен расчет фильтра грубой очистки. После этого выбрано обеззараживание воды и рассчитан потребный часовой и месячный расход хлора, гипохлорита натрия, хлорного железа и другие. Рассчитан объем резервуара чистой воды, произведены расчеты строительно-монтажных работ. В последней главе отображентехнико-экономический анализ. В результатебыли определены полные затраты, стоимость сооружений, реагентов и прочих строительных материалов.

Таким образом можно прийти к выводу, что поставленная задача снабдить качественной водой потребителей была решена в полном объеме.

СПИСОК ИСПООЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 СНиПРК4.01-02-2009 «Водоснабжение. Наружные сети сооружения».
- 2 СНиПРК4.01-41-2006 «Внутренний водопровод и канализация зданий».
 - 3 СНРК4.01-03-2011 «Водоотведение. Наружные сети и сооружения»
- 4 СН РК 4.01-05-2001 «Инструкция по проектированию и монтажу сетей водоснабжения и канализации из пластмассовых труб» Астана, 2003г.
- 5 Шевелев Ф.А., А.Ф. Шевелев «Таблицы для гидравлического расчета водопроводных труб.»,Справочное пособие. М., Стройиздат, 2006.
- 6 Репин Б.Н.,Запорожец С.С, Ереснов В.Н., Справочник. «Водоснабжение и водоотведение. Наружные сети и сооружения», М., Высшая школа,2009.
 - 7 СНиП III-4.80.« Техника безопасности в строительстве».
- 8 СП РК 1.02-21-2007 «Правила разработки, согласования, утверждения и составтехнико-экономических обоснований на строительство».
- 9 РП «Реконструкция магистрального водовода водохранилище Селетинское г. Степногорск и насосной станции 1-го подъема. 1-ая очередь строительства» ТОО «ВОСТОКОБЛПРОЕКТ» 2008 г.
- 10 Технико-экономическое обоснование «Реконструкция очистных сооружений Сопки-305 города Степногорска Акмолинской области» «ВОСТО-КОБЛПРОЕКТ» 2015 г.
- 11 Назаров И.А., «Справочник проектировщика. Водоснабжение население населенных мест и промышленных предприятий». Изд. 2-е, перераб. и доп. М., Стройиздат, 2011.- 288 с..
- 12 СНиП 1.04.03-85. «Нормы продолжительности строительства и задела в строительстве предприятий, зданий и сооружений».
- 13 Басса Г.М. «Водоснабжение. Технико-экономические расчеты».- Киев, Высшая школа, 2012г.
- 14 Кожинов В.Ф., «Очистка питьевой и технической воды», примеры и расчеты, М., 2001.

приложения

Приложение А

Таблица A.1 – Нормы водопотребления на хозяйственно-питьевые нужды

Степень благоустройства районов жилой застройки	Удельное хозяйственно-питьевое водопотребление в населенных пунктах на одного жителя среднесуточное (за год), л/сут.
Застройка зданиями, оборудованными внутренним водопроводом и ка-	
нализацией: без ванн	125160
с ванными и местными водонагревателями	160230
с централизованным горячим водо- снабжением	230350

Таблица А.2 – Значения коэффициентов βтах и втіп

	Число жителей тыс. человек												
До	0,2	0,5	1	1,5	2,5	4	6	10	20	50	100	300	1000
0,1													и бо-
													лее
4,5	3,5	2,5	2,0	1,8	1,6	1,5	1,4	1,3	1,2	1,15	1,1	1,05	1,0
0,01	0,02	0,05	0,1	0,1	0,1	0,2	0,25	0,4	0,5	0,6	0,7	0,85	1,0
	4,5	4,5 3,5	4,5 3,5 2,5	До 0,2 0,5 1 4,5 3,5 2,5 2,0	До 0,2 0,5 1 1,5 0,1 3,5 2,5 2,0 1,8	До 0,2 0,5 1 1,5 2,5 4,5 3,5 2,5 2,0 1,8 1,6	До 0,2 0,5 1 1,5 2,5 4 4,5 3,5 2,5 2,0 1,8 1,6 1,5	До 0,2 0,5 1 1,5 2,5 4 6 0,1 3,5 2,5 2,0 1,8 1,6 1,5 1,4	До 0,2 0,5 1 1,5 2,5 4 6 10 4,5 3,5 2,5 2,0 1,8 1,6 1,5 1,4 1,3	До 0,2 0,5 1 1,5 2,5 4 6 10 20 4,5 3,5 2,5 2,0 1,8 1,6 1,5 1,4 1,3 1,2	До 0,2 0,5 1 1,5 2,5 4 6 10 20 50 0,1 4,5 3,5 2,5 2,0 1,8 1,6 1,5 1,4 1,3 1,2 1,15	До 0,2 0,5 1 1,5 2,5 4 6 10 20 50 100 4,5 3,5 2,5 2,0 1,8 1,6 1,5 1,4 1,3 1,2 1,15 1,1	До 0,2 0,5 1 1,5 2,5 4 6 10 20 50 100 300 0,1

Приложение Б

Таблица Б.1-Перечень строительно-монтажных процессов

Технологические процессы	Единицы измерения		
По проторитони и из работи	Смены		
Подготовительные работы			
Механизированное разработка траншей и котлованов одно-	100 м ³		
ковшовым экскаватором			
Укрепление стенок траншеи и котлованов	\mathbf{M}^2		
Ручная зачистка дна траншей и котлована грунта	\mathbf{M}^3		
Раскладка материала	МΠ		
Укладка труб	МΠ		
Устройство колодцев	ШТ		
Установка задвижек и гидрантов	ШТ		
Частичная засыпка	M^3		
Предварительное испытание	МΠ		
Устранение дефектов	Смены		
Окончательное испытание трубопровода	МΠ		
Полная засыпка	100 м ³		
Промывка и хлорирование трубопровода	МΠ		
Благоустройство	M^2		

Приложение В

Таблица В.1 – Стоимость строительных работ

Наименование работ	Объем работ	Стоимость работ, тг
Разгрузка труб автокраном	33 т	35000
Разгрузка железобетонных стеновых панелей автокра- ном	640 т	67000
Срезка растительного слоя бульдозером	66 м ²	105000
Разработка грунта траншей и котлованов экскаватором обратной лопатой	4553 м ³	472000
Разработка недобора грун- та вручную	75 m ³	150000
Обратная засыпка траншей и котлованов	1065 м ³	38000
Установка фундаментных блоков	61 шт	455000
Установка блоков наруж- ных стен	61 шт	450600
Прокладка трубопроводов из отдельных частей	887,5 м	2900054
Подготовка поверхностей-под оштукатуривание	2834 m^2	1860000
Прошивка сетки по карка- су с обмазкой раствором	2834 м ²	190000
Оштукатуривание поверхности	2834 m^2	353000
Малярные работы	2834 м ²	77200
Итого		7152854

Продолжение приложения В

Таблица В.2-Численность производственных рабочих.

Наименование участка	Наименование профессии	Нормативная численность чел./сут	Списочная численность человек
Насосные станции	машинист насосных станций I и II подъемов	5,5 x 1,2 = 6,6	7
Водопроводная сеть	обслуживающий персонал сетей		8
Очистные со- оружения	оператор на фильтрах	4,5	6
	оператор хлора- торной установки	4,5	6
	коагулянщики	4,5	4
	машинист ком- прессорной уста- новки	2,0	2
Прочие рабочие			20
Итого по про-изводству			53 человек

Продолжение приложения В

Таблица В.3-Затраты на реагенты

Реагент	Годовое количество обрабатываемой воды, тыс. м ³ /год	Доза для об- работ- ки,мг/л	От- пуск- ная це- на,тг,т н	Затра- ты на заго- тов-ку, %	Содер- жание основ- ного ве- ществ,%	Всего затрат, тыс.тг
Хлорное железо 40%	18338	40	3600	15	9,50	31968
Гипохлорит натрия 12-14%	18338	0,5	4800	15	7,00	726
Натрий едкий 50%	18338	5	5400	15	99,6	570
Кислота соля- ная 35%	18338	0,5	3300	15	20,5	510
Пиросульфит натрия	18338	12	6100	15	5	15819
		_				49593

Приложение Г

Г.1 Описание общие технологической схемы очистки воды

Технология сорбционной очистки воды является высокоэффективным методом глубокого очищения. Сорбция — это устранение вредных химических соединений и примесей путем связывания частиц за счет силы молекулярного взаимодействия. Уникальность технологии очистки воды с помощью сорбции заключается в том, что сорбционные материалы позволяют очищать воду от многих органических веществ, которые не удаляются другими методами.В качестве сорбентов служат пористые твердые материалы. К сорбционным материалам относятся: активированный угол, иониты, цеолит, полисульфон, полиамид и другие.

Исходная вода из Селетинском водохранилище, которое расположено на расстоянии 50 км от станции водоочистки, подается по двум трубопроводам в распределительный колодец, где производится дозирование коагулянта. Минеральный коагулянт - раствор FeCl₃ с содержанием хлорного железа 30-40% поступает со станции дозирования коагулянта из технологического помещения. Минимальное контактное время коагулянта с исходной водой составляет 30 сек. Этот процесс называется микрофлоккуляцией, так как за 30 секунд после добавления коагулянта в исходной воде образуются микрофлоккулы размером от 0,5 до 10 микрон. За точками дозирования коагулянта установлены статические миксеры, которые предназначены для смешивания и распределения коагулянта во всем объеме исходной воды. Выбор миксера ST-MIXDN600 обусловлен высокой эффективностью перемешивания, низким перепадом давления и не требующей обслуживания эксплуатацией. Миксер ST-MIX позволяет проводить перемешивание с эффективностью от 0,985 до 0,998 при скорости потока воды от 0,5 до 3,0 м/с. Дозирование коагулянта полностью автоматизировано и пропорционально расходу исходной воды. Из распределительного колодца благодаря повысительной насосной станции PS1исходная вода по трубопроводу поступает на биполярные автоматические фильтры, которые выполняют функцию грубой очистки воды перед участком ультрафильтрации.

Принцип действия данного фильтра заключается во встроенном уникальном фильтрующем элементе в виде сетки с порами до 200 мкм, выполненным из нержавеющей, стали. Промывка фильтров осуществляется автоматически по времени или по перепаду давления. Блок промывки укомплектован насосами исходной воды, подающими воду на мембраны. Время полной промывки одного фильтра 20 секунд при расходе промывной воды 24л/сек. Объем промывной воды одного фильтра составляет 480 литров. Промывки грубых фильтров составит 1-2 раза в сутки.

После грубой фильтрации очищаемая вода без крупных механических примесей подается на 5 установок ультрафильтрации AQUAPOREUF первой

стадии. На каждой установке AQUAPORE UF установлено 72 мембранных модуля dizzer XL Multibore $0.9^{\text{®}}$ с S = 5040 м². Размер ультрафильтрационных мембран составляет 0.02 мкм, или 20нм, поэтому применение этой технологии позволяет гарантировать остаточную мутность менее 0,1мг/л. Ультрафильтрационная мембрана является физическим барьером от бактерий, спор, цист, паразитов, простейших и вирусов. Ультрафильтрационная установка состоит из капиллярной мембраны. Капиллярные мембраны представляют собой тонкие полимерные трубки диаметром 0.7-2.0 мм, фильтрование может вестись изнутри наружу или снаружи вовнутрь. Такие мембраны не содержат сепараторных и дренажных сеток, поэтому они обеспечивают большую устойчивость мембранных элементов к засорению взвешенными веществами. В качестве материала для изготовления ультрафильтрационных мембран в основном используются полимерные вещества – ацетат целлюлозы, полисульфон, полиамид и их производные. Полимерным мембранам могут придаваться разнообразные свойства путем изменения поверхностного заряда мембраны. Такие технологические приемы позволяют управлять селективными характеристиками мембран и их устойчивостью к загрязнению различными веществами.

Обратная промывка осуществляется при помощи насосной станции PS-2. Для обратной промывки используется фильтрат установок AQUAPOREUF. Время обратной промывки составляет 35-45 с, θ = 230 л/м²/ч. Усиленная обратная промывка отличается тем, что для усиления очистки в воду обратной промывки дозируются различные реагенты. Добавление кислоты НС1 32% в воду обратной промывки до рН 2,0-2,5 усиливает очистку мембран от минеральных загрязнений, таких как карбонаты кальция и магния, соли алюминия и железа. Добавление каустика NaOH 32% в воду обратной промывки до рН 12,0-12,5 усиливает очистку мембран от органических загрязнений. Для дозирования реагентов усиленной обратной промывки используется станции дозирования СЕВ-1 и СЕВ-2. После усиленной обратной промывки проводится замачивание мембран в реагенте 15-10 мин. Промывочная вода обратной промывки с установок AQUAPOREUF направляется в емкость нейтрализации TANK-NEIT, в которой кислые стоки нейтрализуются щелочными стоками до нейтральной рН 6,0-9,0. В результате нейтрализации соляной кислоты и гидроокиси натрия образуется хлорид натрия:

$$HCl + NaOH = NaCl + H_2O$$

Промывная вода усиленной обратной промывки через общий дренажный трубопровод сбрасывается в озеро накопитель промывных вод. Очищенная вода первой стадии от пяти установок через коллектор направляется по трубопроводу очищенной воды проходит узел дозирования гипохлорита и направляется в емкости хранения питьевой воды.

Промывная вода обратной промывки первой ступени ультрафильтрации поступают на вторую ступень ультрафильтрации, которая состоит из двух сис-

тем ультрафильтрации AQUAPORE MBR с погружными ультрафильтрационными модулями и двух мембранных емкостей. Модуль состоит из набора фильтрационных кассет, т.е. «подушек», расположенных между двумя полуцилиндрами из пластика. Фильтрационные мембраны представляют собой плоские четырехугольные мембраны, сваренные по краям. Внутри мембранной подушки расположены дренажная пластина и дренажная сетка для отвода фильтрата. Через два отверстия в мембране происходит отвод фильтрата. В воду, поступающую на вторую ступень, дозируется коагулянт хлорное железо $3,0\,$ мг/л. На каждой установке установлено по $2\,$ мембранных модуля MicroClear MB с $S=1200\,$ м 2 .

Для очистки мембран установки AQUAPORE MBR используется обратная промывка. Обратная промывка мембран установки AQUAPORE MBR проводится 1-2 раза в сутки в сочетании с дезинфекцией мембран гипохлоритом натрия. Для дезинфекции и очистки мембран в воду обратной промывки дозируется гипохлорит натрия до концентрации 50 мг/активного хлора. Промывная вода остается в мембранном бассейне. Объем обратной промывки 2-х установок AQUAPOREMBR промывки составляет не более 200 л.

Для обеспечения требуемых микробиологических показателей питьевой воды в процессе хранения и распределения воды по сетям очищенную воду хлорируют с использованием гипохлорита натрия. Для хлорирования воды используют готовый раствор гипохлорита натрия NaClO 14%. Дозирование гипохлорита натрия полностью автоматизировано пропорционально расходу очищенной воды. Для эффективного перемешивания гипохлорита натрия во всем объеме воды сразу после точки дозирования гипохлорита установлен статический миксер. Концентрация активного хлора постоянно контролируется при помощи датчика активного хлора, который установлен после статического миксера. Концентрация дозируемого гипохлорита по активному хлору может быть задана в диапазоне от 0.01 до 0.3 мг/л. Последозирования гипохлорита натрия питьевая вода направляется в резервуары очищенной воды, где далее по трубопроводу подается с помощью насосной станции второго подъёма к потребителю в город.

Продолжение приложения Γ

Таблица Г.2- Сравнительный анализ исходной и очищенной воды

Наименование показателя	Единицы из- мерения	Показатели исходной воды	Результаты ис- следований	Нормы Сан- ПиН 2.1.4.1074-01 «питьевой
				воды»
Водородный	-	7,5	7,5	6-9
показатель, рН				
Мутность	мг/л	1,5	0,1	1,5
Цветность	градус	40	20	20
Запах	балл	2	2	2
Привкус	балл	2	2	2
Жесткость об-	мг-экв/л	4,5	3,5	7
щая				
Железо	мг/л	0,5	0,27	0,3
Кремний	$\mathrm{M}\Gamma/\mathrm{\Pi}$	12,6	7,7	10
Хлориды	мг/л	360	170	350
Сульфаты	$\mathrm{M}\Gamma/\mathrm{\Pi}$	550	430	500
Нитраты	мг/л	50	38	45
Общее мик-	Число образ.	71	15	Не более 50
робное число	колонии бак-			
	терий в 1 мл			