
THE MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF

KAZAKHSTAN

Kazakh National Research Technical University named after K. I. Satbayev

Institute of Information and Telecommunication Technologies

Department Of Cybersecurity, Data Storage and Processing

Kussembay Aruzhan Maratkyzy

Development of Intellectual ChatBot System

DIPLOMA WORK

Major 5B070300 – «Information systems»

Almaty 2019

Ilporoxon aHaJrlna Or.rera no4o6un Hayvnuvr pyKoBoAlrre/reM

3aln.rrrc, qro r o3HaKouulca(-acr) c llonurtvt orqeroM nogo6un, xoropufi 6sn creHepr4poBaH Cncreuor't
BbrqB.rreHrrq 14 npeAorBparr{eHnr rrlraruara B orH orrreHulr pa6 orrr :

Anrop: Kycerra6afi A.M

IlasnaHue: Development of Intellectual Chatbot System

Koop4unarop:Annrar Axenoe

Koa$Suquenr no4o6un 1:0,4

Koa$Snquenr no4o6ua 2:0

Tpenora:0

flocae aHiurr{3a Or.rera no4o6nn Koucrarrrpyro c/reAymrqee :

J.E o6uapyxeHnsre n pa6ore 3auMcrBoBaHr.rq qBrqrorcs 4o6pocoeecrHbrMra v He o6na4aror
npra3HaKaMz nJrarr,rara. B cngsu c qeM, npr43Halo pa6ory caMocroqreruuofi r4 AonycKalo ee K

3arr{14re;

n o6HapyxeHHbre n pa6ore 3avMcrBoBaHr.rff He o6ra4aror nprtHaKaMr4 nJrarr4ara, Ho rrx qpe3MepHoe

Ko.[vqecrBo Bbr3brBaer coMHeHvrr B orHorrreHrau qeHHocru pa6oru no cyqecrBy vl

oTcyTcTBr4eM caMocrosreJrbHocrr.r ee aBTopa. B cesgz c r{eM, pa6ora AoDKHa 6blrr eHoer
orpeAaKTr4poBaHa c r{enbro orp aHvqeHus 3ar,rMcrB o sanuia;

n o6uapyxeHHbre n pa6ore 3aHMcrBoBaHr4q qBr*orcq ne4o6poconecrHbrMt4 u o6ra4aror
npr43HaKaMn nflarr4ara, urrr4 e nefi coAeproTcr npeAHaMepeHHbre r,rcKoKeHr,rs reKcra,
yKa3brBarou{r4e Ha [orrbrrKrr coKpbrrr4q ne4o6pocoBecrHbrx gafiMcreosaHzfi. B cessu c qeM,

He Ao[ycKaro pa6ory K 3arr{rare.

O6ocHoeaHr,re:

/3,06:ut4
Iama

j#
il od nucu Hayuu o e o pyrco eod um ena

 i Документы, в которых найдено подобные фрагменты: из
RefBooks

Краткий отчет

Университет: Satbayev University

Название: Development of Intellectual Chatbot System

Автор: Кусембай А.М

Координатор: Алмат Аженов

Дата отчета: 2019-05-06 05:42:37

Коэффициент подобия № 1: 0,4%
Коэффициент подобия № 2: 0,0%
Длина фразы для коэффициента
подобия № 2: 25

Количество слов: 7 062

Число знаков: 43 460

Адреса пропущенные при проверке:

Количество завершенных проверок: 44

 Самые длинные фрагменты, определеные, как подобные

№ Название, имя автора или адрес гиперссылки
(Название базы данных) Автор

Количество
одинаковых
слов

1 ANALYSIS OF CRM IMPACT ON CUSTOMER LOYALTY IN HOSPITALITY INDUSTRY.
CASE OF HILTON HOTELS CORPORATION
Uniwersytet Ekonomiczny w Krakowie (Wydział Ekonomii i Stosunków Międzynarodowych)

Magdalena Rup 10

2 URL_
https://en.wikipedia.org/wiki/Service_of_process

 5

3 URL_
https://en.wikipedia.org/wiki/Message_authentication_code

 5

4 URL_
https://en.wikipedia.org/wiki/Message_authentication_code

 5

Не обнаружено каких-либо
заимствований

 Документы,содержащие подобные фрагменты: Из домашней базы данных

Не обнаружено каких-либо заимствований

>>

>>

>>

https://en.wikipedia.org/wiki/Service_of_process
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Message_authentication_code

 Документы,содержащие подобные фрагменты: Из внешних баз данных

Документы, выделенные жирным шрифтом, содержат фрагменты потенциального плагиата, то есть превышающие лимит в длине
коэффициента подобия № 2

№ Название
(Название базы данных) Автор

Количество
одинаковых
слов
(количество
фрагментов)

1 ANALYSIS OF CRM IMPACT ON CUSTOMER LOYALTY IN HOSPITALITY INDUSTRY.
CASE OF HILTON HOTELS CORPORATION
Uniwersytet Ekonomiczny w Krakowie (Wydział Ekonomii i Stosunków Międzynarodowych)

Magdalena Rup 10 (1)

 Документы,содержащие подобные фрагменты: Из интернета

Документы, выделенные жирным шрифтом, содержат фрагменты потенциального плагиата, то есть превышающие лимит в длине
коэффициента подобия № 2

№ Источник гиперссылки

Количество
одинаковых
слов
(количество
фрагментов)

1 URL_
https://en.wikipedia.org/wiki/Message_authentication_code

10 (2)

2 URL_
https://en.wikipedia.org/wiki/Service_of_process

5 (1)

Copyright © Plagiat.pl 2002-2019

>>

>>

https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Service_of_process

АҢДАТПА

Сұхбатбот зияткерлік жүйесін дамыту

Дипломдық жұмыста әлеуметтік желі және жедел мессенджердің бөгде

сервистерімен біріктірілген веб-қосымшаны құру сипатталған. Жұмыста

пәндік салаға талдау жүргізілді, пайдаланылған технологиялар, веб-

қосымшаны құру процесі, деректер базасымен өзара іс-қимыл, бөгде

сервистермен қосылу және интеграциялау әдістері сипатталған. Бұл жоба

электрондық коммерция саласына, атап айтқанда интернет-дүкендерге

бағытталған, олардың алдында қолдау қызметін жақсарту және

автоматтандыру міндеті тұр.

АННОТАЦИЯ

Разработка интеллектуальной системы чатбот

В дипломной работе описывается создание веб-приложения, которое

интегрировано со сторонними сервисами социальной сети и мгновенного

мессенджера. В работе проведен анализ предметной области, описаны

использованные технологии, процесс построения веб -приложения,

взаимодействие с базой данных, методы подключения и интеграции со

сторонними сервисами. Данный проект нацелен на сферу электронной

коммерции, в частности интернет-магазинов перед которыми стоит задача

улучшить и автоматизировать службу поддержки.

ANNOTATION

Development of Intellectual Chatbot system

The thesis describes the creation of a web application that integrates with

third-party services of social network and instant messenger. The work analyzes

the subject of study, describes the technologies used, the process of building a

web application, interaction with the database, connection and integration with

the third-party services. This project focuses on e-commerce area, in particular

online stores, which are faced with the task of improving and automating customer

support.

CONTENTS

INTRODUCTION .. 7

1 Subject of study ... 8

1.1 Chatbot: A definition .. 9

1.2 A brief history of chatbots ... 10

1.3 Components .. 11

1.4 Opportunities and challenges ... 12

1.5 Formulation of the problem .. 14

2 Selection of programming tools ... 15

2.1 Programming language and libraries .. 15

2.2 Web framework.. 17

2.3 Data Storage ... 20

2.4 Web API methods .. 21

2.5 REST API technology .. 22

3 Development of a system ... 27

3.1 Database development ... 27

3.2 Development of a chatbot .. 32

CONCLUSION ... 35

REFERENCES .. 36

Application A ... 37

Application B ... 46

7

INTRODUCTION

 In modern society, information technologies have become firmly established in

the life of every individual. In Kazakhstan and around the world there is a rapid

development of tools and technologies related to the exchange of information. In our

country today, the state program "Digital Kazakhstan" designed for 2018-2022 is being

actively implemented. It includes a developed information and communication

environment, e-government services, e-commerce, digital libraries, block chain

technologies, cybersecurity, e-logistics, smart cities. This means that these areas are

actively growing and are in high demand.

The number of users of social media channels and instant messengers is growing

very fast. Today, they are in great demand, this is due to a change in the field of mobile

Internet: high speeds, low prices and the wide distribution of smartphones. Already, 2

billion people use messaging applications, and according to predictions, by 2021 the

number of users will increase to 2.48 billion [1].

The relevance of the chosen topic can be explained by the fact that virtual

communication is growing in importance and becoming one of the main types of

communication between people in modern world. People chat with each other on social

media channels and instant messengers on a daily basic because it is much easier and

faster than trying to communicate through calling them. Instant messengers are also

have a very easy to understand interface that make users like it. This project will help

small and medium businesses to improve their customer service and communication

between costumers and the company.

The aim of the thesis is to develop an intelligent chatbot system with training

mode that will have integration with social media channel like VKontakte and instant

messenger Telegram. The main objectives for the introduction of an automated

intellectual chat bot system:

- research systems integration methods;

- consider the methods of interaction between web services;

- study instant messenger’s Web API.

Final goal of the thesis is to create a CRM system for small and medium.

businesses in order to interact with sales channels through one interface and automate

customer support through chatbot. How a developed end system can affect a business:

- improve customer service experience;

- permanent availability with quick answers;

- increase the worker’s productivity;

- maximize customer engagement and loyalty;

- increase resource profit.

8

1 Subject of study

The object of study of this diploma work is a chatbot. The scope for it is

electronic commerce also called e-commerce projects in particular online stores, which

became a main key element of the sales industry. An online store is an interactive

website that advertises a product or service, accepts purchase orders, offers the user a

choice of calculation options, a way to receive an order, and invoice for payment. From

a technical point of view, an online store can be defined as a multifunctional software

module, embedded in a website and designed to ensure the sale of products of the

company via the Internet. Online stores can be classified by type of sales, payment

methods and the number of product categories presented on the site. In addition, online

stores differ in how they receive income from the site owner.

Selling your own goods and services through the Internet is the main way of

commercial use of sites for most manufacturing and commercial enterprises. The

company creates a site and places on it information about their products and services,

prices and guarantees for buyers. Then they try to attract visitors and show them this

information.

The Internet has become the main source of information for a huge number of

potential buyers. More and more people, before making any major purchase, are

looking for information on the web about manufacturers and sellers of the goods they

need. After examining the alternative offers of sellers, consumers make an informed

choice, which ends with a deal.

Nowadays, it is much easier and more convenient to shop online. You do not

have to get to the actual store to buy a product; you can comfortably sit at home and

find things to buy that will be delivered straight to your house. Most of the online stores

even offer fittings and if the item did not fit you or you just did not like it, then you can

easily return it back. The amount of people that prefer this method of shopping is

growing each day.

Chatbots are used in various business areas to improve customer service and

provide them with technical support:

- in insurance, a bot is able to help conclude an agreement and apply for

payment;

- in the communal sphere, he informs about tariff changes, accepts meter

readings and accident notifications;

- in medicine, a chat bot can record a patient to a doctor and conduct an

initial survey;

- in the restaurant, bots can reserve a table and take an order;

- in online stores they help arrange the purchase, delivery and payment;

- in call centers of large companies, robots provide communication with

clients and provide them with services at any time of the day or night.

My project allows automating the feedback for the client through online chatbot

that will provide the instant response for the costumers available 24/7, eventually

improve the customer service, user loyalty, and essentially increase the sales and

straight profit. Through constant interaction with people, the chatbot will learn to

9

imitate real conversations and respond to verbal or written inquiries, helping them find

answers. Thus, after each dialogue, it will become smarter and provide more help for

the business. Chatbots respond to consumer needs for responsiveness and

personalization, optimizing online experience and improving it. This way of interaction

helps increase consumer activity, and allows brands to interact with their audience in a

more natural way like friends. Chat bot is always in touch 24/7 and 365 days a year.

 1.1 Chatbot: A definition

A chat bot is a computer program, actually a virtual interlocutor, that works on

the basis of established rules and algorithms. It is able to imitate human behavior while

communicating with a potential client. It can work on any known platform, for

example, Messenger, Telegram, Vkontakte, etc.

The term chatbot consists of two other terms - chat and bot. The meaning can be

better understood by examining the two components separately. The Oxford Dictionary

defines chat as “an informal conversation” and more specifically as “the online

exchange of messages in real time with one or more simultaneous users of a computer

network” [2]. I Bot is defined as being “(chiefly in science fiction) a robot” with the

specific characteristics of representing “an autonomous program on a network

(especially the Internet) which can interact with systems or users, especially one

designed to behave like a player in some video games” [2].

There are two types of bots [3]:

- simple, that perform a limited number of actions, inform on standard queries

and work according to the established rules and only;

- smart, that use elements of artificial intelligence, they study themselves,

conduct a full-fledged dialogue with the client and are able to learn.

My chatbot will be smart and have the training mode which will provide the

ability to learn from answers of online store worker’s, based on those answers it will

reply to the costumers later on its own.

I can classify chatbots based on features they have into following categories:

One feature chatbots. They only one feature is provided by a large proportion of

chatbots. These chatbots are functionally limited but user-friendly. One example is a

Facebook chatbot called Instant Translator [4]; the person selects a language to be

translated into at the beginning. From there, Instant Translator will simply translate all

of the text it receives into the chosen language selected.

Proactive Chatbots. This category characterizes chatbots that push user

information rather than answering conversational questions. The person does not need

to communicate with the chatbot hereby, but only uses it as a service on certain times

to receive information. An example would be a service that sends a daily weather

forecast to the user.

Group Chatbots. There are a variety of functionality chatbots that can provide

when interacting with a group of people rather than just a single user. These chatbots

are restricted to platforms that provide the necessary features for group conversations

to use chatbots. Roll [5] for a messenger service called Kik is a simple example for a

10

group chatbot ; when trying to send a question to Roll, the chatbot responds with a

random name selected from the group members.

Simplification Chatbots. In some cases, chatbots can be used to provide users

with an easier interface for complex and difficult existing tasks, traditionally involving

many formal and bureaucratic steps. One instance is the DoNotPay service. It is

marketed as "the first robot lawyer in the world" [6] and the system helps the customer

with basic legal issues, like fighting tickets for parking.

Personal Assistants. This category includes chatbots that integrate many

different characteristics and it can be viewed like their own systems. This category

includes Apple's Siri and Amazon's Alexa.

Optimization Chatbots. By developing a chatbot for consumers to connect to

the product, this category attempts to make current products more available.

Companies like to reduce the friction for users when using their products. The most

evident aspect of chatbot systems at the moment is the ease with which users can access

products. Companies want to maximize the use of products through making them

accessible through chatbots ' conversational interfaces. As apparent from the

commitment of so many well-established companies, companies are keen to be present

on instant messenger platforms.

The chatbot system for my project can be classified as optimization chatbot.

 1.2 A brief history of chatbots

A while back every chief had a personal assistant who was in charge of

schedules, calls, routine work and similar things but in 1966 it had all changed. The

professor Joseph Weizenbaum presented the first virtual assistant interlocutor

“ELIZA” [7] to the world. The discovery of the new technology inspired people to start

thinking and creating so called robots that would do different monotonous tasks.

By 1990, the industry and the technology tools had evolved to quite an extent,

which as per the "Turing Test," virtual companions had started testing for humanity.

The participants contacted the human first, then the computer. At the earliest stages, it

was easy to distinguish in which the robot is, but 30 percent of the respondents have

been unable to determine whether a young person or a computer was talking to them

on one of the tests in 2014.

These programs have already been called artificial intelligence (AI) cautiously

by this time. In addition, if it could then be called a questionable statement, then AI is

a rather real phenomenon with the introduction of trained neural networks.

2017 was a year of the performance of chatbots with an integrated neural

network. People have come to a virtual robots implementation that was more practical.

They modified them, gave them specific different tasks and gave them the form of

instant messengers.

 1.3 Components

11

Generally speaking, chatbots can be considered as a combination of three parts,

namely the interface between the chatbot and human users through a messaging

platform, the intelligence that enables the chatbot to understand and solve customer

requests and gain knowledge from each interaction, and integration, which includes

mainly connection with other channels and systems.

Chatbots are also made up of inputs and outputs. The best way to describe input

is to record and enter data into a system and provide the system with instructions. The

user's input into the chat must match one of the predefined inputs in order for the

computer system to be able to understand it correctly in order for a chatbot to work.

The three key elements therefore include: chatbot must be able to adhere to its user's

characteristics, be suitable for the tasks it is meant to perform, and the function and

environment for which it is intended. After implementation, ensure that suitable

feedback is obtained so that the system itself can be evaluated and adapted.

Output can always be described as converting information from a computer

system into a form that can be recognized by a human being. As with inputs, it is

important to understand what and who the system is designed for in order to set up a

suitable input-output structure.

The chatbot environment consists of a few different parts. One of them is the

user messages: they are a dynamic input that the agent can receive at any given time.

They consist in a string representing the actual text sent by the user, and a metadata

structure containing additional information like a pointer that links the message to the

structure representing the particular conversation it belongs to, and possibly the time

the message was sent, on which platform the message was sent, etc.

Another significant part of the environment the agent has access to is the

company’s backend which contains additional information about the user and the

database’s state. The agent can both inspect and influence certain aspects of the

backend. The chatbot also has the ability to send replies to the users in order to obtain

new information, or simply to tell them that their request has been accepted and treated

accordingly.

The user sends a message to the agent, which is our chatbot system that interacts

with backend client server and saves and extracts data from there. Then he sends a

reply to a user back. Visual representation of the chatbot environment is presented in

the Figure 1 below:

Figure 1 – Chatbot environment

12

1.4 Opportunities and challenges

The time of interacting through telephone calls or face-to-face contact with

customers being the only possible option for communicating is over. With chatbots

becoming extremely popular, they are also showing their advantages and benefits

improving the business.

Optimization of the solution of standard repetitive tasks that can be formalized

in the form of business logic. This applies to both business communications with the

outside world, for example, customers or suppliers and internal communications.

The obvious gain for the company in these cases is to reduce costs and save staff

time. However, there is also an unobvious one - increasing staff motivation. Standard

operations are present in the life of even the most qualified employees and do not give

them joy at all. Freed from them, people will be able to do creative tasks, for which, in

fact, have chosen their profession.

Their permanent 24/7 availability is another advantage of chatbots [8]. All the

time, chatbots are online, processing queries from the user. In addition, the problem of

waiting until one gets through to an employee is also solved as most chatbots provide

the function of processing unlimited queries simultaneously without causing issues.

Chatbots also have the ability to boost cross-selling and upselling and help

customers when shopping online to find the perfect item. This enables chatbots to

give recommendations based on the past personal data, preferences and history of

order. It will also enable the subsequent one-click ordering, increasing the customer's

convenience.

Personalization - chat bots save all customer information. Contact begins with

the consent of the client to the processing of personal data. Client personalization

comes after each interaction with the robot. The program remembers and analyzes

which product a person bought, which accessory he came up with and which one was

not needed, and so on, ad infinitum. Thanks to this, we can confidently increase the

number of cross-sell sales.

Work with clients - the more often they communicate with the robot, the more it

collects information about users. The platform will remove from you the task of

collecting real and relevant information. Thus, the chatbot is used for both sales and

marketing. It supports loyal customers interested in the brand with push notifications.

Unlike applications or websites, messengers communicate through dialogue, and

people do not need to learn a new interface. And for the Millennials, messengers are

also a favorite tool. Messengers are becoming new sales and marketing channel, and

chat bots are the tool for this channel.

So, with that being said, chatbots ' four main advantages include convenience,

cost reduction, the ability to maximize customer experience and engagement, and

minimize customer service employee work hours. In addition, customers will be

operated quickly as the time will be spent waiting for an inquiry to be answered will

be decreased and chatbots will provide immediate answers.

It is hard to imagine a technology that has no disadvantages and potential risks

and chatbot technology is no exception [9]. Each client is an individual with its own

13

identity and criteria, allowing service delivery to be deeply unique and customized to

the particular individual. Therefore, developers have to keep that in mind when creating

a chatbot system. It has to be highly personalized which is hard to do and needs a better

understanding of chatbot algorithms.

In general, the issue of simultaneity or inseparability has to be addressed by

almost all service systems. This motivates the fact that services are generated and

consumed at the very same time most of the time, which means that development will

not start ahead of the user's input provision. Of course, this will also affect any process

of inquiry handling. Demand is hard to predict, so it may be that the various employee

scheduled less time than he should have in order to answer correctly and promptly to

all inquiries. The importance of consistent performance and the ability to manage

different services at a similarly excellently perceived level are further evaluated. All

these processes, however, are intangible, making measuring the effectiveness of

service provision even more difficult.

Because programmers develop chatbots, pre-programmed knowledge exists and

an input will only be recognized if it agrees with an expected path. As soon when

something, which does not fit the expected direction, is put in to the chatbot, the output

will also be greatly affected. The output will therefore be either monotonous or

frustrating for the customer, failing to provide the correct response and leaving users

unhappy. One major issue in positioning the provision of input forms sarcasm and

irony, as chatbots seem to be unable to translate sarcasm the right way, considering it

genuine. Even though chatbots can be very advanced with artificial intelligence, they

will never be fully able to replace a human being and their critical thinking.

The convenience of shopping online and finding products for a customer through

chat is an advantage of chatbots. However, this can also result to probable

misunderstandings, changing the buying decisions of the customer. For example, the

client can change their taste or preference that will lead chatbot to fail and lose its logic

and algorithm. It could become a time-consuming mission to narrow down every filter

characteristic, like size, pattern, type and fabric, reducing client convenience and

removing the benefit of this aspect.

As proposed, chatbots could potentially lead to a decreasing labor supply due to

the reduction in customer support man-hours. The main jobs to be affected are those

with small level and monotonous tasks, becoming a standardized process substituted

by a chatbot.

Also, another risk is the threat of social engineering attacks is very high since

the global use of chatbots has only boomed over the last few years. Users should always

be able to trust the chatbot as well as any data, but confidential information in particular

needs to be treated securely.

1.5. Formulation of the problem

The main goal of this diploma work is to create a system for processing customer

requests from the instant messaging service Telegram and social media channel

14

VKontakte with training mode. The main objectives for the introduction of an

automated intellectual chat bot system:

- create a modern and flexible interface for visualization graph of dialogue

and interaction with him;

- build an extensible web application architecture for later development;

- realization of interaction between client application and server via the

WebSocket protocol for working with the application in real time;

- embed into storage database architecture information about the dialogues;

- connect the system with instant messenger Telegram and social media

channel Vkontakte implementing Web API using machine-based interactions REST

and SOAP.

This chatbot will allow clients to configure automatic answers to users' questions

as well as automate routine operations using scripts.

The system is able to work with two types of questions: custom and standard. In

the first case, the administrator independently registers the essence of the question and

the keywords to which the bot will respond. For example, during business hours, the

operator can answer customer questions, while the chatbot will contribute these

questions and answers to the database. After that, not during business hours, the chatbot

will be able to pull out answers to questions from the database on its own and respond

to users outside of business hours.

15

2 Selection of programming tools

When looking for potential solutions to write a chatbot, the development of a

system has been found, you have to know at least one of server programming

languages. Deciding which programming language to understand and then use was

required. It also is important to be able to integrate with the REST (Representational

State Transfer) API (Application Programming Interface) technologies, which

are provided by instant messengers namely Telegram Bot API and VKontakte API. For

several reasons, Python has been selected as the server language.

2.1 Programming language and libraries

Python is a general-purpose programming language primarily intended to

increase the programmer's own productivity instead of the code he wants to write [10].

Simply put, you can write actually nearly anything with no substantive problems on

Python language (web and desktop applications, games, automation scripts,

complicated calculation systems, life support systems, and far more). In addition, the

entry threshold is minimal, and the code is descriptive and easy to understand in so

many ways. Because of the code's simplicity, it becomes easier and more enjoyable to

maintain programs written on Python especially in comparison to Java or C++.

Moreover, from a business perspective, this involves a cost savings and an increase in

the efficiency of employees.

One of the key reasons for choosing a programming tool called Python is that it

offers a good web solution. It has a big constantly growing amount of libraries,

frameworks, modules available. They are written in C and on Python itself, and all

suitably qualified coders are able to develop them. In particular, developing this

system Django web framework solution was used. It is extremely user-friendly, safe

and quick. It is extremely stable and reliable programming tool that can be used in a

number of applications. Most professional developers tend to choose Django,

particularly due to shorter development time and ease of installation.

The unquestionable advantage is that on almost all platforms and systems, the

Python interpreter can be implemented. The first of its kind programming language

was C, but when writing a platform agnostic program, its data types on various

machines could take up differing amounts of memory. It is not a drawback for Python.

One advantage is also the simplicity of Python syntax. It lacks headers and

redundant code. Python is versatile, modern and easy to use. Because Python has a

wide range of uses — like development, scripting, scientific use, and so on — a huge

community has sprung up around it, with which developers get tremendous support.

Python’s popularity is growing rapidly fast so there is also extensive documentation

available for developers.

From the used modules can be identified:

- Numerical Python — complex mathematical functionality such as altering

whole arrays and matrices ;

- Tkinter — constructing applications using a graphic user interface ;

16

- OpenGL — using a complex library of two- and three-dimensional Open

Graphics Library graphical modeling .

The main libraries that I used were scrapy, tensorFlow, pattern, bokeh.

Scrapy is a freeware, open-sourced framework available for Python for web

crawling [11]. It gives an opportunity to a programmer to send requests for a website

and analyze the HTML script you are receiving back as a reply. It makes the whole

experience much easier and more convenient for the developer. Scrapy provides a

powerful framework for extracting the data, processing it and then save it. Scrapy uses

spiders, which are self-contained crawlers that are given a set of instructions . In Scrapy

it is easier to build and scale large crawling projects by allowing developers to reuse

their code.

And there is also an option for establishing the HTTP server with this library,

which can command it through HTTP server requests. The server generates the answer

response that is essentially is data formatted in JSON that also contains the scratched

data. That advantage of scrapy helps programmers to spend more time developing a

code instead of formatting and scratching data. To install scrapy library into the Python

project I used the pip install scrapy command. It is going to download Scrapy on my

whole web application system. I deployed a Scrapy project by starting the command:

scrapy startproject webchatbot once the setup was fully complete.

TensorFlow is an openly available Python's programming tool library that was

designed by Google Inc. in order to do fast numerical computing using neuro networks.

It is a basic library that also can be used either directly to develop Deep Learning

systems or to use wrapper additional libraries to ease the processes of built on top of

the TensorFlow [12]. Computation is an also defined in the structure of a guided graphs

in terms of the data stream, the procedures and the functions.

With the help of this library, you can calculate the nodes that have zero or more

of input and output. The data that is moving between those nodes is also known as the

tensors that are the several-dimensional true value of array datatype.

There is data flowing, branch, loops and a state changes are defined on the chart

diagram. Also there are special edges that could be used to synchronize with the actions

within the chart, such as the waiting for the calculation to be completed on the amount

of input data.

The operation is an abstract calculation data named that can take the input data

characteristics and generate the output data characteristics. For instance, you can define

an operations to add the numbers or divide them. It can run on single CPU systems,

GPUs as well as mobile devices and large scale distributed systems of hundreds of

machines.

Pattern is a web mining module for the Python programming language. It has

tools for data mining (Google, Twitter and Wikipedia API, a web crawler, a HTML

DOM parser), natural language processing (part-of-speech taggers, n-gram search,

sentiment analysis, WordNet), machine learning (vector space model, clustering,

SVM), network analysis and canvas visualization [13]. For data mining functionality

method, it contains the special APIs used for the data mining technology from the web

applications such as Facebook, Telegram, Vkontakte and etc.

17

For machine learning functionality method, it includes the computer-learning

model and perceptron that can be used to classify, regress, and cluster the tasks.

For installing this library, I used Python’s command with syntax of pip

installation pattern. I used the pattern.db module that contains wrappers for databases

like SQLite, MySQL, Unicode CSV files and Python's datetime. It offers a convenient

way to work with tabular data, for example retrieved with the pattern.web module.

Bokeh is the highly customizable visualization based library for using on Python

programming tool that targets the basic representation website browsers. Bokeh has so

called bindings in multiple programming languages tools. Those same bindings create

the JSON file that functions as an input data for Script library, which in the switch

portrays data to traditional website browsers [14].

Bokeh can also generate beautiful and interactive visual representation over an

enormous amount of broadcasting datasets with strong-performance of the

interactivity. It also can assist any developer that wants to build the customizable

mathematical diagram, dashboard solutions and applications for the data quickly and

effortlessly. Bokeh has several advantages:

- enables the developer to quickly build the difficult numerical plots and by basic

commands;

- offers the programmer the function of the output in different media such as

html, notebook and server;

- gives a visualization that can also be embedded on the web solution tool

Django;

- allows you to develop the specific visualization compiled in other libraries such

as matplotlib, seabornlib, ggplots;

- has the ability of versatility to use interaction, the templates, the layouts and

the various visualization designing options.

Bokeh library provides the programmer powerful and flexible features that

deliver straightforwardness and complex customization for a developer. As shown in

the text below, it offers the user with a multiple option visualization design interfaces.

They are charts, plots and models. Charts that are a first-level design layout interface

that is used as rapidly and concisely to create the complex mathematical plots. Plotting

that is also called secondary-level design interface focused on the visual glyph

composition of data. Models that are a simple small-leveled design that gives the power

to the application programmers the ability of maximum potential flexibility.

2.2 Web framework

A framework is a set of ready-made libraries and tools in development that help

you build web applications. The solution was chosen for the project is a Django

framework that is written on Python.

In the common real life situations, Django is equipped with most libraries and

tools needed. Django also provides an important for a web application security.

Also because of the fact that Django is an open source programming tool and

a highly popular framework, a responsive community of developers has formed around

18

it. There is a lot of Django documentation that is available for any developer. If you

ever get stuck-it is not hard to find a solution.

Django Framework uses the MVC (Model-View-Controller) concept, which

helps you achieve high write code speed and application productivity and high-quality

debugging [15]. The following architecture of MVC methods is shown on the Figure 2

below:

Figure 2 – Django MVC model architecture

 Dividing the project into three parts, such as the definition of the database,

presentation and work logic, makes Django Framework easy for everyone to

understand, even a beginner level developer.

The Django Framework is fully Object Oriented. A Django application consists

of at least 3 main files, namely:

- __init__.py is a very important file that is needed for Python to consider

the directory where this file is located as an application;

- views.py - application logic, contains a set of functions that Django can

call during an application call;

- models.py - work with the database.

The user's first stage of request enters the router also known as the URL

dispatcher, which makes the decision which function must be called to handle the

request. The choice is based on the results of a list of rules composed mainly of a

regular expression and the function name: if such a URL is the function.

The router-invoked function is called a view. Inside there could be any business

logic, in my case, this data is checked and saved to the database when a request came

with data from the reply form of the client.

Data on the application is stored in a database. Relational database MySQL has

been used in the thesis work. It is possible to create, read, modify and delete data in the

database, which can also be called CRUD. A special language SQL (structured query

language) is being used to query the data on the database.

19

Models are used in Django to operate with the database. They allow you to define

tables and ask questions about a familiar developer of pythons, which is far more

convenient.

The data collected from the database is prepared for forwarding. You can replace

them with a template and send them as an HTML file. But this happens only once in a

single-page application when an HTML page is created to which all JavaScript scripts

are attached. The data is serialized and sent in JSON format in other cases. Despite

having its own nomenclature, such as naming the callable objects generating the HTTP

responses "views", the core Django framework can be seen as an MVC architecture.It

consists of an object-relational mapper (ORM) that mediates between data models

(defined as Python classes) and a relational database ("Model"), a system for

processing HTTP requests with a web templating system ("View"), and a regular-

expression-based URL dispatcher ("Controller"). The web application architecture is

shown on the Figure 3 below:

Figure 3 – Architecture of the web application

Also included in the core framework are:

- a lightweight and standalone web server for development and testing;

- a form serialization and validation system that can translate between

HTML forms and values suitable for storage in the database ;

- a template system that utilizes the concept of inheritance borrowed from

object-oriented programming ;

- a caching framework that can use any of several cache methods support

for middleware classes that can intervene at various stages of request processing and

carry out custom functions ;

20

- an internal dispatcher system that allows components of an application to

communicate events to each other via pre-defined signals an internationalization

system, including translations of Django's own components into a variety of languages;

- a serialization system that can produce and read XML and/or JSON

representations of Django model instances;

- a system for extending the capabilities of the template engine;

- an interface to Python's built-in unit test framework.

2.3 Data Storage

For the storage of data, SQLite database solution was chosen. SQLite application

database is easily embedded. SQLite is a software library that provides a relational

database management system. The lite in SQLite means light weight in terms of setup,

database administration, and required resource. SQLite has the following noticeable

features: self-contained, serverless, zero-configuration, transactional.

Normally, an RDBMS such as MySQL, PostgreSQL, etc., requires a separate

server process to operate. The applications that want to access the database server use

TCP/IP protocol to send and receive requests. This is called client/server architecture.

SQLite does NOT work this way. SQLite does NOT require a server to run. SQLite

database is integrated with the application that accesses the database. The applications

interact with the SQLite database read and write directly from the database files stored

on disk.

The following Figure 4 illustrates the SQLite server-less architecture:

Figure 4- SQLite architecture

SQLite is self-contained means it requires minimal support from the operating

system or external library. This makes SQLite usable in any environments especially

in embedded devices like iPhones, Android phones, game consoles, handheld media

players, etc. SQLite is developed using ANSI-C. The source code is available as a big

sqlite3.c and its header file sqlite3.h. If you want to develop an application that uses

SQLite, you just need to drop these files into your project and compile it with your

code.

Because of the serverless architecture, you don’t need to “install” SQLite before

using it. There is no server process that needs to be configured, started, and stopped. In

addition, SQLite does not use any configuration files.

All transactions in SQLite are fully ACID-compliant. It means all queries and

changes are Atomic, Consistent, Isolated, and Durable. In other words, all changes

21

within a transaction take place completely or not at all even when an unexpected

situation like application crash, power failure, or operating system crash occurs.

SQLite uses dynamic types for tables. It means you can store any value in any

column, regardless of the data type.

SQLite allows a single database connection to access multiple database files

simultaneously. This brings many nice features like joining tables in different databases

or copying data between databases in a single command.

SQLite is capable of creating in-memory databases which are very fast to work

with.Since this system is based on files, particularly in comparison to network Data

Base Management System, it offers a big variety of tools to work with it. Calls are

made specifically to files once functioning with this DBMS (data is stored on those

files), rather than ports and sockets in DBMS network. And that is why SQLite is both

very fast and powerful due to having to serve library technology. The architecture of

connection of database with Python is shown below on Figure 5:

Figure 5 – Connection of SQLite with Python

SQLite advantages:

- file structure— the intire database comes from a single file, so transferring

it to different machines is very easy;

- standards used. Although this database may seem primitive, but it uses

Structured Query Language ery well. Some attributes (RIGHT OUTER JOIN or FOR

EACH STATEMENT) are excluded, but the main features are still supported;

- great in development and testing-it is often essential to scale up along the

way of application development. For this reason, SQLite provides all you need as it

consists of just one file and a library written on C programming language.

22

When using SQLite, I do not need to create a database, because SQLite uses files

of the file system to store its data. By default, the database connection parameters are

defined in the project configuration file, settings.py, with the DATABASES option,

which is {} by default. Base default must be defined necessarily. The dictionary can

also define any number of other databases. The easiest option is to use a single SQLite

database:

DATABASES = {

 'defaultdb': {

 'ENGINEdb': 'django.db.backends.sqllite3',

 'NAMEdb': 'webapplicationdb'

 }

}

2.4 Web API methods

Web API is a new environment for web applications based on instructions and

patterns. The Web API enables the developer to develop simple Web API web services

with just a low amount of code and configuration using a basic controller paradigm.

An API is primarily an interface that enables developers to build an application using

ready-made blocks. The API can transmit data in a format beyond standard HTML for

web applications, making it convenient to use when writing your applications. An

architecture and connection of web application with Web API is shown in the Figure 6

below:

Figure 6 – Web API integration architecture

An API is data sent to other services by a service. Social networks provide third-

party applications with data about users and their behavior. Independent developers are

able to use this data and develop applications for various tasks: dating services,

audience overview, social mail and dynamic cover management, along with games and

chatbots.

API Vkontakte – This interface makes it possible to receive information from

the vk.com database with the help of http requests to the server. In their architecture

23

you do not have to know precisely how the foundation is built and the types of table

and field it includes. It is sufficient that it is "known" to the API request. The service

on its own specifically defines the request syntax as well as the type of data to be

returned.

Telegram's development is primarily determined by a high number of bots —

small service robots. Every person who is familiar with programming can develop

them. Telegram API Bot is a programming interface for developing your own bot.

The API contains objects and instructions to set the Telegram bot's behavior.

You can develop your own program codes using the interface, which begin to work as

bots when launched in Telegram.

When developing, each bot is assigned a unique token just like in VK API. In

order to receive a token, you need to sign up and fill out a form, after which the token

automatically appears on your account.

2.5 REST API technology

REST is an architectural solution that organizes web applications through a

network interaction. A specific REST exchange method is used if six requirements are

met:

- the client-server model is being used-i.e. in the interaction of the two

REST systems, one is always the client and the other is the server;

- missing state - i.e. the server "does not remember" if the client interacted

earlier. For this reason, each request is processed as if the server "first sees" the

requesting party (and therefore all the necessary data must be transmitted to the server

in each request, for example, in order to authorize the client);

- caching - Clients can cache server-received data;

- Interface uniformity-here are four vague requirements that are best read

alone;

- layers and hierarchy-the server can actually be hidden behind another

"proxy" server, it's convenient for server-side load balancing. Those implies the ability

to use the server hierarchy;

- on-demand code (optional limitation)-the skill to load executable files to

the client from the server.

All server interaction can be reduced to 4main operations receiving server data

(usually in JSON or XML), adding new data to server, modification of existing server

data and deleting server data. The operation of data recovery can not lead to a change

in the status of the server. The REST API architecture is shown below on the Figure 5

below:

24

Figure 7 – REST API architecture

An HTTP request method is used for each type of operation:

- receiving – GET;

- add – POST;

- change – PUT ;

- delete – DELETE.

Regarding learning REST API. REST is a software architecture style for

building distributed, scalable web services that use HTTP requests .

Hypertext Transfer Protocol (HTTP), one of the protocols of the TCP / IP stack

(Transmission Control Protocol / Internet Protocol), was originally designed for

publishing and receiving HTML (Hyper Text Markup Language) pages and is now

used for distributed information systems. HTTP is used on the World Wide Web for

data transmission and is one of the most widely used application protocols.

HTTP defines a request / response protocol. When a client, such as a web

browser, sends a request message to the server, the HTTP protocol determines the types

of messages that the client uses to request the web page, as well as the types of

messages that the server uses to respond. The three common message types are GET,

POST and PUT.

POST and PUT are used to send messages that upload data to a web server. For

example, when a user enters data in a form embedded in a web page, POST includes

the data in a message sent to the server. PUT uploads resources or content to a web

server.

Being extremely flexible, HTTP is not a secure protocol. POST messages upload

information to the server in plain text that can be intercepted and read. Similarly, server

responses, as a rule, HTML pages are also not encrypted. For secure communication

over the Internet, the Secure HTTP Protocol (HTTPS) is used to access or publish

information on a web server. HTTPS can use authentication and encryption to secure

25

data as it travels between client and server. HTTPS defines additional rules for passing

data between the Application and Transport Layers.

JSON (JavaScript Object Notation) is a simple data exchange format that is easy

to read and write by both humans and computers. JSON is a text format completely

independent of the implementation language, but it uses conventions familiar to

programmers in C-like languages like C, C ++, C # , Java, JavaScript, Perl, Python and

many others. These properties make JSON the ideal language for exchanging data.

JSON is based on two data structures:

- collection of key or value pairs. In different languages, this concept is

implemented as an object, record, structure, dictionary, hash, named list, or associative

array;

- an ordered list of values. In most languages, this is implemented as an

array, vector, list, or sequence.

These are universal data structures. Almost all modern programming languages

support them in any form. It is logical to assume that a data format independent of a

programming language should be based on these structures.

In JSON notation, it looks like this: object is an unordered set of key or value

pairs. An object begins with an opening brace and ends with a closing brace. Each

name is followed by a colon, key or a comma separates value pairs. An array is an

ordered collection of values. The array begins with an opening square bracket and ends

with a closing square bracket. Values are separated by commas. The value can be a

string in double quotes, a number, true, false, null, an object or an array. These

structures can be nested. A string is a Unicode character set and a null terminator

enclosed in double quotes, using the backslash as an escape character. A character is

represented as a single character string. The number is represented in the same way as

in C or Java, except that only the decimal number system is used. Spaces can be used

between any tokens. Excluding some coding details, the foregoing fully describes the

language. The described architecture is shown on the Figure 6 below:

Figure 8 – JSON API architecture

As shown on the Figure 6, the general workflow for the JSON Data API works

like this. The client sends an HTTP request to the JSON Data API server, using the

JSON Data API syntax. The JSON Data API server consumes the incoming HTTP

request, validates its syntax, converts it into an XML command that the Intelligence

Server can consume, and passes the XML command to the Intelligence Server. The

26

Intelligence Server consumes the XML command, generates the requested results, and

passes them back to the JSON Data API server as JSON. The JSON Data API server

combines all of the necessary results, builds an HTTP response, and passes it back to

the client.

27

3 Development of a system

First step of creating a web application is to set up the environment. I

downloaded the database of choice SQLite, installed Python and Django.

After that, I created a project on Django framework. It consists of two main parts,

which are the project itself, and its apps and uses an MVC web architecture. Then made

sure that it is situated in the right directory and the project is ready for future

development. After that step, I created an application called mychatbotwebapplication.

Then I also created a view, which is a set of functions and classes inside the

views.py file. After that, I wrote a view function that will call our html page.

One statement is used for the app's view function, request. That object was an

HttpRequestObject generated every time a page is loading. It consists of request data,

including the method that can take multiple values, including GET and POST queries.

Now that the view function was created, I created the user's HTML page.

After that I needed to work with URLs so that the user could see my web

application. URLs are placed in the url.py file. Wrote the following script to implement

it. Then I imported the path of the html page into the url.py file to connect them. Now

when I have done that if I visit the localhost server the html page will be shown.

So I had views and URLs and another main part that was missing is model. In

order for the system to work properly with the model, I created database using SQLite.

Firstly, I created tables auth_user_user_permissions, auth_user,

auth_group_permissions, auth_group.

auth_user_user_permissions table consists of id, user_id, permission_id,

permission_auth attributes.

auth_user table has attributes id, password, last_login, username, first_name,

last_name, date_joined, is_active, is_staff, email.

auth_group_permissions has id, group_id, auth_permisson.

auth_group consists of id, name.

These tables are used for user authorization.

3.1 Database development

In SQLite, sqlite3 command is used to create a new SQLite database. You do

not need to have any special privilege to create a database.

Following is the basic syntax of sqlite3 command to create a database is $sqlite3

DatabaseName.db Always, database name should be unique within the RDBMS.

To create a new database <webapplication.db>, then SQLITE3 statement would be as

follows:

$sqlite3 webapplication.db

SQLite version 3.7.15.2 2013-01-09 11:53:05

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite>

28

The above command will create a file webapplication.db in the current directory.

This file will be used as database by SQLite engine. If you have noticed while creating

database, sqlite3 command will provide a sqlite> prompt after creating a database file

successfully.

Once a database is created, I can verify it in the list of databases using the

following SQLite .databases command.

sqlite>.databases

seq name file

0 main /home/sqlite/webapplication.db

I will use SQLite .quit command to come out of the sqlite prompt as follows:

sqlite>.quit

$

The .dump Command

I can use .dump dot command to export complete database in a text file using

the following SQLite command at the command prompt. $sqlite3 testDB.db .dump >

webapplication.sql. The above command will convert the entire contents of

webapplication.db database into SQLite statements and dump it into ASCII text file

webapplication.sql. I can perform restoration from the generated webapplication.sql in

a simple way as follows :

$sqlite3 webapplication.db < testDB.sql

At this moment my database is empty, so I can try above two procedures once

you have few tables and data in your database.

Consider a case when I have multiple databases available and I want to use any

one of them at a time. SQLite ATTACH DATABASE statement is used to select a

particular database, and after this command, all SQLite statements will be executed

under the attached database.

If I want to attach an existing database webapplication.db, then ATTACH

DATABASE statement would be as follows:

sqlite> ATTACH DATABASE webapplication.db' as 'TEST';

Use SQLite .database command to display attached database.

sqlite> .database

seq name file

0 main /home/sqlite/ webapplication.db

2 test /home/sqlite/ webapplication.db

The database names main and temp are reserved for the primary database and

database to hold temporary tables and other temporary data objects. Both of these

database names exist for every database connection and should not be used for

attachment, otherwise you will get the following warning message.

sqlite> ATTACH DATABASE webapplication.db' as 'TEMP';

Error: database TEMP is already in use

sqlite> ATTACH DATABASE webapplication.db' as 'main';

Error: database TEMP is already in use

SQLite DETACH DATABASE statement is used to detach and dissociate a

named database from a database connection which was previously attached using

29

ATTACH statement. If the same database file has been attached with multiple aliases,

then DETACH command will disconnect only the given name and rest of the

attachment will still continue. I cannot detach the main or temp databases.

If the database is an in-memory or temporary database, the database will be

destroyed and the contents will be lost. Following is the basic syntax of SQLite

DETACH DATABASE 'Alias-Name' statement.

DETACH DATABASE 'Alias-Name';

Here, 'Alias-Name' is the same alias, which you had used while attaching the

database using ATTACH statement.

sqlite>.databases

seq name file

0 main /home/sqlite/testDB.db

2 test /home/sqlite/testDB.db

3 currentDB /home/sqlite/testDB.db

Let's try to detach 'currentDB' from webapplication.db using the following

command.

sqlite> DETACH DATABASE 'currentDB';

Now, if I will check the current attachment, I will find that testDB.db is still

connected with 'test' and 'main'.

sqlite>.databases

seq name file

0 main /home/sqlite/ webapplication.db

2 test /home/sqlite/ webapplication.db

SQLite CREATE TABLE statement is used to create a new table in any of the

given database. Creating a basic table involves naming the table and defining its

columns and each column's data type.

CREATE TABLE is the keyword telling the database system to create a new

table. The unique name or identifier for the table follows the CREATE TABLE

statement. Optionally, I can specify database_name along with table_name.

Creates a COMPANY table with ID as the primary key and NOT NULL are the

constraints showing that these fields cannot be NULL while creating records in this

table.

sqlite> CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL);

Lets create one more table, which I will use in our exercises in subsequent

chapters.

sqlite> CREATE TABLE DEPARTMENT(

 ID INT PRIMARY KEY NOT NULL,

 DEPT CHAR(50) NOT NULL,

 EMP_ID INT NOT NULL

30

);

I can verify if my table has been created successfully using SQLite command

.tables command, which will be used to list down all the tables in an attached database.

sqlite>.tables

COMPANY DEPARTMENT

A developed database with tables and connections is shown below on the Figure

7:

Figure 7 – Developed database for a system

Also I the database of chatbot’s algorithm is hown below on the Figure 8.

Figure 8 – Chatbot algorithm database

Here, you can see the COMPANY table twice because it is showing COMPANY

table for main database and test. COMPANY table for 'test' alias created for your

31

webapplication.db. I can get complete information about a table using the following

SQLite .schema command.

sqlite>.schema COMPANY

CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL);

The developed system database is shown on the Figure 9:

Figure 9 – Database of a messages connection

Also the database for connecting with Web API and getting messages and

saving them into the database as well the replies to them is shown below on the

Figure 10.

32

Figure 10 – Database of a saved messages and replies

3.2 Development of a chatbot

After that, I integrated my application with Vkontakte social media channel

throughVK API. To get started with an API Vkontakte I got an access token, which is

a special access key. Token is a string of digits and Latin characters and may refer to a

user, community or application itself. After connecting the token, I can start to get data

through http queries. After connecting the system with VKontakte API, I added user

authorization.

Getting access token and implementing user authorization function:

Def authorization(events manager):

 Vk_api:

 App_ID = 586879451651561

 if entrys_logs.get() == '' entrys_pass.get1() == '':

 tkinter.messagesbox.showstheerror('Error!', 'Fill in the form!')

 else:

 Session = vk.Auths_Session(apps_id=Apps_ID,

users_login=entrys_logs.get(), users_password=entrys_pass.get(),

 scopes='walls, messages, friends, groups, video')

 vk_apis = vk.API(Session)

 tkinters.messagesbox.showsinfo(

 'Information:',’Authorization is successful!')

 auths_windows.destroy()

 mains_menus()

 except Exceptions as Error:

 tkinter.messagesbox.showserror(Information:', Authorization is not

successful!')

Then I decided to integrate the application with Telegram instant messenger

through Telegram API. First you had to get the keys to interact with the API. An API

33

key is a secret code that identifies a specific account and allows you to use the methods

for which it is needed. In the case of a Bot API, the key acts as a path to be accessed,

and in the case of a database, the API key acts as a parameter for the request.

For a bot to function, you need to create it. To do this, there is a special meta bot

BotFather (@BotFather) in the telegram. It is necessary to add it through the search, in

the client telegram. A list of his commands can be obtained by writing / help in the chat

with him. To create a new bot, you need to write the / newbot command and in the next

message send the name of the bot (must end with the word bot). In response, you will

receive a message with the API key.

To get the key database API, you need to register and fill out a small form, after

which the key automatically appears in your account.

After receiving the keys, tests were conducted in which simple requests were

sent through the browser in order to determine in which format the data is returned. An

example of the request and response is shown.

Directly writing Python code, during which our own class was developed and

written to access the database, was not required to access Telegram, since the library

was already written. WebHooks were chosen as the method of receiving updates, since

they are more reliable than the getUpdates method.

Different requests to the base API occur almost equally, the method is selected

by which the request will occur, a dictionary is formed with the parameters for this

method and a GET request is sent, which returns a response in JSON format. An

example of accessing the database is given below. To access the Telegram Bot API,

the existing telebot library was used, and for setting up webcasts and receiving updates

from Telegram was selected cherrypy web server. The class for installing webhooks

are shown in the listing.

With an increase in the amount of code developed, it becomes easy to get

confused in a large number of if-elif-else constructions. Handlers (or decorators) were

written to solve this problem. This allows the code to be spread across various

functions, which improves readability. Decorators will be checked in the order they

appear in the code, that is, the first one that came up is used. Examples of decorators

used are shown in the listing.

Each of the decorators performs their own part of the code, for example, the first

processing start command (first input) generates three buttons with a choice and a

message prompting to click on one of them. An example of processing the first entry

is shown in the listing.

The callback handler divides all callbacks into three types, depending on which

button was pressed. In all the buttons there is information about the mode in which it

works, the page number to be opened and the field with basic information (keyword or

genre). Processing modes among themselves differs little. In the general case, a search

is performed on a field with information and a given page. After that, a list of the found

answers and two buttons are created to go to the next or previous page. After which

all this is sent to the user.

In the generated lists, in addition to the name, there are also links that, when

clicked, the message is sent automatically. Such messages are processed by the

34

following two decorators, they differ only in that one is written to search for

information about the question, and the other to search for information about the

answer. In each of them, a request is executed with an attached identifier, with the help

of the information received, a form is filled out and sent to the user.

The work of the last decorator can be divided into 4 parts. The first and second

is the arrival of “Question” or “Answer” messages, and in either case, a set of buttons

with a callback function is formed, each button contains a genre identifier, a mode, and

what needs to be searched on the first page. An example of processing a message

movies is shown in the listing.

Class learn that is used for training mode and defining and initiating words and

sumbols:

class Learn:

 def __init__(self,statements=[],falseStatements=[]):

 sentenceToWords = [s.split() for s in statements]

 if len(sentenceToWords):

 stripper = re.compile("(^[^a-z0-9]+|[^a-z0-9]+$)")

 commonWords = set(stripper.sub("",word) for word in

sentenceToWords[0])

 for words in sentenceToWords[1:]:

 commonWords = commonWords.intersection(stripper.sub("",word)

for word in words)

The developed web application chatbot interface is shown on the Figure 11

below:

Figure 11 – Web application chatbot interface

35

CONCLUSION

The central aim of this diploma work was to develop an Intellectual ChatBot

system for processing customer requests from the social network channel Vkontakte

and instant messenger Telegram, which would have a training mode and according to

the results of the development, the goal was fully achieved. All of the previously

defined objectives were implemented. The database and algorithms for a chatbot were

developed and research on the integration of systems has been made. One interface

system that automates customer support through chatbot for small and medium

businesses were created and works as defined. The created system will allow solving a

number of valuable tasks for a client, such as automating incoming and outgoing

messages from social networks and instant messengers, real-time work and availability

24/7.

Also it has been found out whether chatbots are useful for the ecommerce

industry and why an organisation should or should not use chatbots. For this purpose,

a literature review and interviews were conducted. This examination enabled the author

to gain knowledge about the usefulness and appropriateness of chatbot applications

nowadays and to provide a recommendation for organisations operating in the service

industry.

Looking back at the accomplished work, it can be said that the solution

developed is satisfying and allows for easy deployment and development if changes

need to be performed. It can be ported on virtually any system provided it can host a

Python environment. Furthermore, it leaves the door open for additional languages’

support and user problems. It is not a perfect solution but considering the requirements,

it works well in practice.

Although chatbots have already been in use for some decades, it could be said

that most of them still face some major problems concerning day-to-day business. One

issue includes that users are always heterogeneous which implies that they are

individuals and need answers to be personalised.

36

REFERENCES

1 Lana R.A, “Messenger marketing as a modern way to promote brands”, May

22, 2018. Pp 105-120.

2 Oxford University Press, “Oxford English Dictionary”, 1 August 2010. Pp

678-680.

3 Alex B.N, “Chatbots are Bots of the future”, May 2016. Pp 67-120.

4 Mazen A.T., “How Instant Translator bot is used by more than 50k users”,

December 2006. Pp 25-30.

5 Ryan Kelly, “How bot attracted 1 million users without even trying”, August

2017. Pp 127.

6 Jon Bruner, Joshua Browder, “Bots that fight bureaucracy”, May 2016. Pp 28-

30.

7 J. Weizenbaum, "ELIZA - A Computer Program for the Study of Natural

Language Communication Between Man and Machine”, Jan 1983. Pp. 23- 28.

8 Katie McCall, “How Chatbots Benefit Brands and Customers”, May 2017. Pp

111.

9 Hussain Fakhruddin, “Why Should Businesses Start Using Chatbots” June,

2017. Pp 17-23.

10 Guttag, John V, “Introduction to Computation and Programming Using

Python: With Application to Understanding Data”. 12 August 2016. Pp 11.

11 Hafsa Jabeen, “Making Web Crawlers Using Scrapy for Python”, January

11th, 2019. Pp 12.

12 Karlijn Willems, “TensorFlow Tutorial For Beginners”, Jan. 16th, 2019. Pp

13.

13 De Smedt, T. & Daelemans, W, “Pattern for Python. Journal of Machine

Learning Research”, 2012. Pp 26.

14 How to start visual designing with Bokeh library on Python. URL:

https://bokeh.pydata.org/en/latest/docs/user_guide.html . (visited on 18/04/2019).

15 Adrian Holovaty, “The Definitive Guide to Django: Web Development Done

Right 2nd ed. Edition”, 2016. Pp 64.

16 VK Open API documentation for developers. URL:

https://vk.com/dev/openapi . (visited on 21/04/2019).

17 Telegram API Bot documentation for developers. URL:

https://tlgrm.ru/docs/bots/api . (visited on 21/04/2019).

18 James Higginbotham and Keith Casey Jones, “A Practical Approach to API

Design”, 2014. Pp 34-56.

19 Aaron Smidt, T. & Daelemans, W, “Python for web. Introduction to Django”,

2014. Pp 38.

20 Kate Andersion, “SQLite database For Beginners”, May 1, 2006. Pp 13.

https://bokeh.pydata.org/en/latest/docs/user_guide.html
https://vk.com/dev/openapi
https://tlgrm.ru/docs/bots/api

37

Application A

Listing of the program:

1 import sqlite3

2 # Create database connection to the sqlite main database

3 connectionObject = sqlite3.connect("primedb.db"

4 #Obtain a cursor object

5 cursorObject = connectionObject.cursor()

6 # Attach a database file

7 attachDatabaseSQL = "ATTACH DATABASE ? AS billing"

8 dbSpec = ("bill.db",)

9 cursorObject.execute(attachDatabaseSQL,dbSpec)

10 # Drop any existing tables with the same name

11 cursorObject.execute("drop table billing.cashbill")

12 # Create billing table in the newly attached database

13 createTableSQL = "CREATE TABLE billing.cashbill(billid int, itemcode int,

rate int, quantity int, price int, taxrate int, tax int, total int)"

14 cursorObject.execute(createTableSQL

15 # Insert a row of data into the billing.cashbill table

16 billid = 1

17 itemcode = 256

18 rate = 300

19 quantity = 2

20 price = 600

21 taxrate = 2

22 tax = 12

23 total = 621

24 insertDataSQL = "INSERT INTO billing.cashbill VALUES (?,

25 ?,?,?,?,?,?,?)"

26 # Substitution parameters for the insert statement- ? will be replaced

27 by members of this tuple

28 insertSpec =

29 (billid,itemcode,rate,quantity,price,taxrate,tax,total)

30 #Execute SQL insert using parameter substitution

31 cursorObject.execute(insertDataSQL, insertSpec)

32 # Commit the changes

33 connectionObject.commit()

34 # Query the cashbill tabl

35 querySpec = (billid,)

36 cursorObject.execute("SELECT * FROM billing.cashbill WHERE

37 billid=?", querySpec)

38 # print the record

39 print("Fetched record from the attached SQLite database table:");

40 print(cursorObject.fetchone())

38

Continue of application A

41 # detach the database

42 detachDatabaseSQL = "DETACH DATABASE billing"

43 cursorObject.execute(detachDatabaseSQL

44 # Close the database connection as the resource is no longer needed

45 CREATE TABLE contacts (

46 contact_id INTEGER PRIMARY KEY,

47 first_name TEXT NOT NULL,

48 last_name TEXT NOT NULL,

49 email text NOT NULL UNIQUE,

50 phone text NOT NULL UNIQUE

51);

52 CREATE TABLE groups (

53 group_id integer PRIMARY KEY,

54 name text NOT NULL

55);

56 CREATE TABLE contact_groups (

57 contact_id integer,

58 group_id integer,

59 PRIMARY KEY (contact_id, group_id),

60 FOREIGN KEY (contact_id) REFERENCES contacts (contact_id)

61 ON DELETE CASCADE ON UPDATE NO ACTION,

62 FOREIGN KEY (group_id) REFERENCES groups (group_id)

63 ON DELETE CASCADE ON UPDATE NO ACTION

64); CREATE TABLE customers (

65 id INTEGER PRIMARY KEY,

66 company_name TEXT NOT NULL,

67 street_address TEXT NOT NULL,

68 city TEXT NOT NULL,

69 state TEXT NOT NULL,

70 zip TEXT NOT NULL

71); CREATE TABLE orders (

72 id INTEGER PRIMARY KEY,

73 customer_id INTEGER,

74 salesperson_id INTEGER,

75 FOREIGN KEY(customer_id) REFERENCES customers(id),

76 FOREIGN KEY(salesperson_id) REFERENCES salespeople(id)

77); CREATE TABLE order_items (

78 id INTEGER PRIMARY KEY,

79 order_id INTEGER,

80 product_id INTEGER,

81 product_quantity INTEGER,

82 FOREIGN KEY(order_id) REFERENCES orders(id),

39

Continue of application A

83 FOREIGN KEY(product_id) REFERENCES products(id)

84); INSERT INTO customers VALUES (null, 'ACME, INC.', '101 Main Street',

'Anchorage', 'AK', '99501');

85 INSERT INTO customers VALUES (null, 'FOOBAR', '200 Foo Way',

'Louisville', 'KY', '40207');

86 INSERT INTO orders VALUES (null, 1, 1);

87 INSERT INTO orders VALUES (null, 2, 2);

88 INSERT INTO order_items VALUES (null, 1, 1, 5);

89 INSERT INTO order_items VALUES (null, 1, 2, 8);

90 INSERT INTO order_items VALUES (null, 2, 3, 6);

91 INSERT INTO order_items VALUES (null, 2, 1, 10);

92 connectionObject.close()

93 import fileinput

94 import tkinter

95 import tkinter.filedialog

96 import tkinter.messagebox

97 import tkinter.ttk as ttk

98 from itertools import cycle

99 from time import sleep

100 import vk

101 def main_auth(event):

102 global vk_api

103 App_ID = 5868794

104 if entry_log.get() == '' or entry_pass.get() == '':

105 tkinter.messagebox.showerror('Error', 'Fill the whole field')

106 else:

107 try:

108 Session = vk.AuthSession(app_id=App_ID,

109 user_login=entry_log.get(), user_password=entry_pass.get(),

110 scope='wall, messages, friends, groups, video')

111 vk_api = vk.API(Session)

112 tkinter.messagebox.showinfo(

113 'Information', 'Login is successful!')

114 auth_window.destroy()

115 main_menu()

116 except Exception as Error:

117 tkinter.messagebox.showerror('Information', Login error

118 ')

119 def update(event):

120 def send(event):

121 try:

122 vk_api.messages.send(

40

Continue of application A

123 user_id=151911284, message=entry_message_1.get())

124 tkinter.messagebox.showinfo('Information', 'Message has been sent')

125 contacts.destroy()

126 except:

127 tkinter.messagebox.showerror('Error', 'Message hasn't been sent')

128 contacts = tkinter.Tk()

129 label_update = tkinter.Label(contacts, text='Message', font='arial 14')

130 label_update.grid(row=0, column=0)

131 entry_message_1 = tkinter.Entry(contacts)

132 entry_message_1.grid(row=0, column=1)

133 send_btn = tkinter.Button(

134 contacts, text='Send', width=11, height=0, font='arial 14')

135 send_btn.grid(row=1, column=1, sticky='e')

136 send_btn.bind('<Button-1>', send)

137 def delete_all_groups(event):

138 '''bot for delete groups'''

139 def start_delete_groups():

140 pb_hd_delete_groups = ttk.Progressbar(root, length=321,

141 orient='horizontal',

142 mode='determinate', max=int(find_groups[0] + 1))

143 pb_hd_delete_groups.pack()

144 pb_hd_delete_groups.start()

145 for Leave in find_groups[1:]:

146 root.update()

147 vk_api.groups.leave(group_id=Leave)

148 sleep(0.2)

149 pb_hd_delete_groups.destroy()

150 find_groups = vk_api.groups.get(count=1000)

151 ask = tkinter.messagebox.askyesno(

152 'Continue', 'Found {} users.

153 Delete?'.format(find_groups[0]))

154 if ask == True:

155 start_delete_groups()

156 tkinter.messagebox.showinfo(‘Information', 'Done')

157 def delete_all_friends(event):

158 '''bot for delete friends'''

159 del_friends = vk_api.friends.get()

160 def start_delete_friends():

161 pb_hd_delete_friends = ttk.Progressbar(root, length=321,

162 orient='horizontal',

163 mode='determinate', max=int(len(del_friends) + 1))

41

Continue of application A

164 pb_hd_delete_friends.pack()

165 pb_hd_delete_friends.start()

166 for delete in del_friends:

167 root.update()

168 vk_api.friends.delete(user_id=delete)

169 sleep(0.2)

170 pb_hd_delete_friends.destroy()

171 ask = tkinter.messagebox.askyesno(

172 'Continue', 'Found {} users.

173 Delete?'.format(len(del_friends)))

174 if ask == True:

175 try:

176 start_delete_friends()

177 tkinter.messagebox.showinfo('Information', 'Done')

178 except:

179 tkinter.messagebox.showerror('Error', Error try again')

180 def clear_message(event):

181 '''clear all your message'''

182 find_message = vk_api.messages.getDialogs(count=200)

183 def start_delete_message():

184 pb_hd_clear_message = ttk.Progressbar(root, length=321,

185 orient='horizontal',

186 mode='determinate', max=int(find_message[0] + 1))

187 pb_hd_clear_message.pack()

188 pb_hd_clear_message.start()

189 for remowe in find_message[1:]:

190 root.update()

191 vk_api.messages.deleteDialog(user_id=remowe['uid'])

192 sleep(0.3)

193 pb_hd_clear_message.destroy()

194 ask = tkinter.messagebox.askyesno(

195 'Continue', 'Found {} messages.

196 Delete?'.format(find_message[0]))

197 if ask == True:

198 try:

199 start_delete_message()

200 tkinter.messagebox.showinfo('Information', 'Done')

201 except:

202 tkinter.messagebox.showerror('Error', 'Error try again later')

203 def clear_wall(event):

42

Continue of application A

204 posts = vk_api.wall.get()

205 def start_clear_wall():

206 pb_hd = ttk.Progressbar(root, length=321, orient='horizontal',

207 mode='determinate',

208 max=int(posts[0] + 1))

209 pb_hd.pack()

210 pb_hd.start()

211 for post in posts[1:]:

212 root.update()

213 vk_api.wall.delete(post_id=post['id'])

214 sleep(0.2)

215 pb_hd.destroy()

216 ask = tkinter.messagebox.askyesno(

217 'Continue', 'Found {} posts. Delete?'.format(posts[0]))

218 if ask == True:

219 try:

220 start_clear_wall()

221 tkinter.messagebox.showinfo('Information', 'Done')

222 except:

223 tkinter.messagebox.showerror('Error', "Error try again later

224 ")

225 def add_friends(event):

226 def start_add_friends(event):

227 search_users = vk_api.users.search(age_from=entry_min_age.get(),

228 age_to=entry_max_age.get(),

229 sex=0, sort=1,

230 online=1, count=1000)

231 tkinter.messagebox.showinfo(

232 'Information', 'Found {}

233 users.format(search_users[0]))

234 friends_bot.destroy()

235 status = tkinter.Tk()

236 status.geometry('400x340')

237 tx = tkinter.Text(status,

238 font=('times', 12),

239 width=62, height=15,

240 wrap=tkinter.WORD)

241 tx.pack()

242 btn_stop = tkinter.Button(status,

243 text='Отмена',

244 font='arial 14',

245 width=15,

43

Continue of application A

246 height=0)

247 btn_stop.pack()

248 btn_stop.bind('<Button-1>', lambda event: status.destroy())

249 for find_friends in search_users[1:]:

250 tx.insert(1.0, str('\nSending a request{} {} ID --> {}

251 \n'.format(find_friends['first_name'],

252 find_friends['last_name'],

253 find_friends['uid']) + '\n'))

254 tx.update()

255 try:

256 vk_api.friends.add(user_id=find_friends['uid'])

257 tx.insert(1.0, 'Request has been sent')

258 tx.update()

259 sleep(25)

260 except:

261 tx.insert(1.0, 'Request hasn't been sent')

262 tx.update()

263 sleep(1.5)

264 tkinter.messagebox.showinfo('Information', 'Done')

265 status.destroy()

266 friends_bot = tkinter.Tk()

267 label_min_age = tkinter.Label(friends_bot,

268 text='Minimal age',

269 font='arial 14')

270 label_min_age.grid(row=0, column=0)

271 label_max_age = tkinter.Label(friends_bot,

272 text='Minimal age',

273 font='arial 14')

274 label_max_age.grid(row=1, column=0)

275 entry_min_age = tkinter.Entry(friends_bot)

276 entry_min_age.grid(row=0, column=1)

277 entry_max_age = tkinter.Entry(friends_bot)

278 entry_max_age.grid(row=1, column=1)

279 btn_start = tkinter.Button(friends_bot,

280 text='Start',

281 width=11,

282 height=0,

283 font='arial 14')

284 btn_start.grid(row=2, column=1, sticky='e')

285 btn_start.bind('<Button-1>', start_add_friends)

286 def message_flood_bot(event):

287 def start_flood(event):

44

Continue of application A

288 Msg = entry_message.get()

289 search_users = vk_api.users.search(age_from=entry_min_age.get(),

290 age_to=entry_max_age.get(),

291 sex=1 if entry_sex.get() == 'Female' else 2,

292 online=1,

293 sort=1,

294 count=1000)

295 tkinter.messagebox.showinfo(

296 'Information', 'Found {} users'.format(search_users[0]))

297 message_flood.destroy()

298 status_send = tkinter.Tk()

299 status_send.geometry('400x340')

300 tx_1 = tkinter.Text(status_send,

301 font=('times', 12),

302 width=62,

303 height=15,

304 wrap=tkinter.WORD)

305 tx_1.pack()

306 btn_stop = tkinter.Button(

307 status_send, text='Cancel', font='arial 14', width=15, height=0)

308 btn_stop.pack()

309 btn_stop.bind('<Button-1>', lambda event: status_send.destroy())

310 for find_user in search_users[1:]:

311 tx_1.insert(1.0, '\nSending message {} {} ID --> {}

\n'.format(find_user['first_name'],

312 find_user['last_name'],

313 find_user['uid']) + '\n')

314 tx_1.update()

315 try:

316 vk_api.messages.send(user_id=find_user['uid'], message=Msg)

317 tx_1.insert(1.0, 'Message has been sent')

318 tx_1.update()

319 sleep(15)

320 except:

321 tx_1.insert(1.0, 'Message hasn't been sent')

322 tx_1.update()

323 sleep(1.5)

324 tkinter.messagebox.showinfo('Information', 'Done')

325 status_send.destroy()

326 message_flood = tkinter.Tk()

327 label_min_age = tkinter.Label(

328 message_flood, text='Minimal age', font='arial 14')

45

Continue of application A

329 label_min_age.grid(row=0, column=0, sticky='e')

330 entry_min_age = tkinter.Entry(message_flood)

331 entry_min_age.grid(row=0, column=1)

332 label_max_age = tkinter.Label(

333 message_flood, text='Maximum age', font='arial 14')

334 label_max_age.grid(row=1, column=0, sticky='e')

335 entry_max_age = tkinter.Entry(message_flood)

336 entry_max_age.grid(row=1, column=1)

337 label_message = tkinter.Label(

338 message_flood, text='Message', font='arial 14')

339 label_message.grid(row=2, column=0, sticky='e')

340 entry_message = tkinter.Entry(message_flood)

341 entry_message.grid(row=2, column=1)

342 label_sex = tkinter.Label(message_flood, text='Пол', font='arial 14')

343 label_sex.grid(row=3, column=0, sticky='e')

344 width=11,

345 height=0,

346 font='arial 14')

347 btn_start.grid(row=2, column=1, sticky='e')

348 btn_start.bind('<Button-1>', start_add_friends)

349 def message_flood_bot(event):

350 def start_flood(event):

351 Msg = entry_message.get()

352 search_users = vk_api.users.search(age_from=entry_min_age.get(),

353 age_to=entry_max_age.get(),

354 sex=1 if entry_sex.get() == '' else 2,

355 online=1,

356 pb_hd.start()

46

Application B

Spellcheck program listing:

357 from spellcheck import *

358 def unit_tests():

359 assert correction('speling') == 'spelling' # insert

360 assert correction('korrectud') == 'corrected' # replace 2

361 assert correction('bycycle') == 'bicycle' # replace

362 assert correction('inconvient') == 'inconvenient' # insert 2

363 assert correction('arrainged') == 'arranged' # delete

364 assert correction('peotry') =='poetry' # transpose

365 assert correction('peotryy') =='poetry' # transpose + delete

366 assert correction('word') == 'word' # known

367 assert correction('quintessential') == 'quintessential' # unknown

368 assert words('This is a TEST.') == ['this', 'is', 'a', 'test']

369 assert Counter(words('This is a test. 123; A TEST this is.')) == (

370 Counter({'123': 1, 'a': 2, 'is': 2, 'test': 2, 'this': 2}))

371 assert len(WORDS) == 506747

372 assert sum(WORDS.values()) == 1642669

373 assert WORDS.most_common(10) == [

374 ('the', 79811),

375 ('of', 40026),

376 ('and', 38315),

377 ('to', 28767),

378 ('in', 22026),

379 ('a', 21124),

380 ('that', 12513),

381 ('he', 12404),

382 ('was', 11411),

383 ('it', 10684)]

384 assert WORDS['the'] == 79811

385 assert P('quintessential') >0

386 assert 0.04 < P('the') < 0.08

387 return 'unit_tests pass'

388 def spelltest(tests, verbose=False):

389 "Run correction(wrong) on all (right, wrong) pairs; report results."

390 import time

391 start = time.clock()

392 good, unknown = 0, 0

393 n = len(tests)

394 for right, wrong in tests:

395 w = correction(wrong)

396 good += (w == right)

397 if w != right:

47

Continue of application B

398 unknown += (right not in WORDS)

399 if verbose:

400 print('correction({}) => {} ({}); expected {} ({})'

401 .format(wrong, w, WORDS[w], right, WORDS[right]))

402 dt = time.clock() - start

403 print('{:.0%} of {} correct ({:.0%} unknown) at {:.0f} words per second

404 .format(good / n, n, unknown / n, n / dt))

405 def Testset(lines):

406 "Parse 'right: wrong1 wrong2' lines into [('right', 'wrong1'), ('right',

'wrong2')] pairs."

407 return [(right, wrong)

408 for (right, wrongs) in (line.split(':') for line in lines)

409 for wrong in wrongs.split()]

410 if __name__ == '__main__':

411 print(unit_tests())

412 spelltest(Testset(open(path.join(path.dirname(path.abspath(__file__)),'sp

ell-testset1.txt'))))

413 spelltest(Testset(open(path.join(path.dirname(path.abspath(__file__)),'sp

ell-testset2.txt'))))

