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ABSTRACT

The 21st century is experiencing an incredible growth of science, including
nanotechnology. The rapid advancement of this new science and its applications of
interest required new, challenging and physically sound ways to design and predict
productivity. A predominantly direct and intelligible approach to modeling is the
molecular dynamics method (Leach, 1996), in which an acceptable inter atomic
potential is chosen to reproduce the interaction between atoms and then integrate the
classical equations of motion with suitable boundary conditions.

A computer model of a two-dimensional gas of non-polar molecules has been
constructed, the pair interaction between which is given by the Lennard-Jones
potential. The model is formulated within the framework of the molecular dynamics
method, which provides for the direct numerical solution of microscopic equations
of motion of interacting particles. The greatest interest is not the trajectories
themselves, but the thermodynamic macro-characteristics of the system under study,
which are calculated because of their statistical averaging.

This paper presents a brief summary of key elements indispensable for
performing molecular dynamics modeling, with a peculiar focus on macro molecular
systems.

We consider the shape of the intermolecular potential for molecules consisting
of atoms and non-spherical sub units, giving examples of how to calculate forces
and moments. We will also outline some molecular dynamic algorithms currently.
Finally, we briefly refer to determinants, some affect the size of the systems and the
length of the runs, which are valuable for calculating statistical properties.

We carry our computer simulations in the hope of evaluating the properties of
molecular assemblies in terms of their structure and microscopic interactions
between them. This serves as an addition to the usual experiments, giving us
something new to learn, something that cannot be demonstrated by other methods.



AHJIATIIA

XXI| FaceIp FBUIBIM, COHBIH 1NIIHAC, HAHOTEXHOJIOTHUSHBIH, KApKbIHABI JaMy
Ke3eHiH O0acTaH kemipyae. by )kaHa FRITBIMHBIH JI€3/Ie JaMybl — OHBIH THIMJIUTITIH
)obanmay MeH OoJpKay VIIIH TYpJl, jKaHa, KYpAem XKoHe (DU3UKAIBIK >KOJAApIbI
Tajgan eTTi. AToMaap apachblHAAFbl OCEpJIECy/l CHUIMMATTAWTBIH, KOJIAWIBI,
aTOMapaJbIK MOTEHITMAJIBI TAHJIAIl, COMKEC IMEeKapaIbIK IIapTTap KOJTaHa OTHIPHIT,
KJIACCUKAJBIK KO3FAJIbIC TEHICY1H HHTETPAJIAUTHIH Typa )KOHE TYCIHIKTI MOJCIIBLY
ToCLI — MoJIeKyaiblK quHamuka (Leach, 1996) omici 00k TaObLIAB.

Kymrap apaceigars! ocepi, JIeHHapa-/[>KOHC TOTEHITMAIBI apKBLIBI OCPIITCH
€K1 OJIIIEeM/Il Ta3/IbIH MOJSPIIbI eMEC MOJIEKYJIalaphl YIIIH KOMIIbIOTEPIIIK MOJIETh
KYPacTBIPBUIILI. ©O3apa opeKeTTeCyIn OeJIeKTEepAiH KO3FalIbIChl JKOHIHJCTI
MUKPOCKOIHUSIIBIK TEHJEY/IIH Typa CaHIbIK IICIIIMIH KapacThIPpaThIH OYJI MOJEIb —
MOJICKYJIAJIBIK ~JUHAMHUKA OJICl Heri3iHae KypbUiabl. OcblFaH KapaMacTa,
3epTTENIHIN OTHIPFaH JKYHE YIIIH aca >KOFapbl KbI3bIFYIIBUIBIKTBI: TPACKTOPUSHBIH
©31 FaHa €MeC, COHBIMEH Karap, OJIapJbl €CenTey HOTHUKECIHJEC aJlbIHFaH
CTAaTUCTUKAJBIK OpTalllaJaHFaH TEePMOJMHAMUKAIIBIK MaKpO-CHUIIaTTaMaliaphbl
TyABIPYIA.

byn KyMmpIcTa MaKpOMOJICKYJAJbIK Kyihere OarbITTaaFaH, MOJEKYIAIbIK
JWHAMHUKA OJICIH MOJETBJCYAl ICKE€ achlpy YIIIH KaKETTi OO0JbIN TaObUIaThIH
MaHBI3/BI JIEMEHTTEP/IIH KhICKAIIIa CHIIaTTaMalIaphbl OepireH.

Kymrep *&oHE MOMEHTTEpIl €CEenTeyIiH MbICAIIApbIH KEITIPE OTBIPHI,
oeiicepasiblk CyOOIpIIKTEH JKOHE aTOMJapAaH TypaTblH MOJIEKyJa YIIIH
MoOJICKyJIaapaiblK MOTCHIIMAIBIH IITiHIH KapacTeIpAbIK. COHBIMEH KaTap, Ka3ipri
TaHJAFbl KEHOIp MOJEKYNaJNbIK JWHAMUKA AJITOPUTMJEPl Typasibl CUMATTANUTBHIH
6onambI3. CTaTUCTUKANBIK JKYHEHIH KAaCHUETTEPIH ecenTey/e KYWEeHIH oJeMiHe
JKOHE alHaJbIM CaHbIHA oCcep €TeTIH JeTEpPMHHAHTTAapFa KbICKallla ClITeMe
KacanuMbI3.

Conpaii-ak, MOJIEKyJa KUBIHTBHIFBIHBIH KAaCHUETTEpiH Oarajiay YIIiH OJIapAbIH
apachIHIAFbl KYPBUIBIMJIBIK JKOHE MHMKPOCKOIMSUIBIK — OCEpJIECYyJli  aHBIKTAY
MaKCaTblHJ]a KOMIBIOTEPIIIK MOJENbACY KYPACTHIPABIK. byl KomiMri TaxipOuemnik
YKYMBICTAp YIUIH alblHFaH, SFHU 0acKa TocUIIepAl KOJIJaHy apKbUIbl aHbIKTaIMaraH
dKaHa aKnaparTapipl OuTyre MYMKIHAIK Oepell >KoHE TKIpHOEeNiK KYMbICTapra
YJIKEH yJjiec OOJIbIT TaObLIa b



AHHOTAIUA

XX| Bek UCHBITHIBAET HEBEPOSTHBI pPOCT HAyKH, B TOM YHCIE,
HAaHOTEXHOJIOTMU. BbICTpoe MpoABMKEHUE 3TON HOBONPUOOPETEHHON HAYKH U €€
UHTEPECYIOIINX MPUMEHEHUH TMOTPeOOBa0 HOBBIX, HEMPOCTHIX M (HU3HUECKU
00OCHOBaHHBIX MyTEH JIJIsl IPOEKTUPOBAHUS U IPOTHO3UPOBAHUSI TPOYKTUBHOCTH.
[IpeuMyIIeCTBEHHO, NPSAMBIM U BPAa3yMHUTENBHBIM MOAXOAOM K MOJEIUPOBAHUIO
SBIIIETCS METOJ MoJIeKy/sipHoi auHamuku (Leach, 1996), B KoTOpOM BBIOHpAIOT
IIPUEMIIEMBI MEXKATOMHBIM MOTEHLHAN Il BOCIPOM3BENCHHS B3aUMOICHCTBUSA
MEXIy aTOMaMH, a 3aT€M, UHTETPUPYIOT KIIACCHUECKUE YPaBHEHUs IBUKEHUS C
HNOAXOSIIAMH IT'PAHUYHBIMU YCIOBUSMH.

[TocTpoeHna KoMIbIOTEpHAs MOAEIb JBYMEPHOIO ra3a HEMOJIAPHBIX MOJIEKYI,
NapHOE B3aUMOJIEUCTBHE MEXKIy KOTOPbIMU 3aJaéTcsi MmoTeHuuanoMm JleHHapa-
JxoHca. Moaenb chopmylupoBaHa B paMKaxX METOJIa MOJIEKYJISIPHON JTUHAMUKU,
IPEIyCMaTPUBAIOIIETO MPSAMOE YHCIEHHOE PpEIIEHHEe MHUKPOCKOIUYECKHX
YpaBHEHUH JABWKEHUS B3aMMOJEUCTBYIOIIMX dYacTull. [Ipm 3TOM HauOombInl
MHTEpEC MPEACTABISAIOT HE CaMU TPACKTOPUH, a BBIYUCISEMbIE B pe3yibTaTe HX
CTaTUCTUYECKOTrO YCPEIHEHHS] TEPMOJWHAMHYECKHE MAKPO-XapaKTEPUCTUKU
U3y4aeMOM CHCTEMBI.

B oaroil pabotre naercs KpaTKOe U3JI0XKEHUE KIIHOYEBBIX HJIEMEHTOB,
HE3aAMEHUMBIX IS BBINOJHEHUS MOJEIMPOBAHUS MOJIEKYJIIPHON JWHAMUKH, CO
CBOCOOPA3HBIM aKIIEHTOM Ha MaKpOMOJIEKYJISIPHBIE CUCTEMBI.

Mp1 paccmaTpuBaeM (GpopMy MEKMOJIEKYIISIPHOTO MOTEHLMANA Il MOJIEKYII,
COCTOSIIIIMX U3 aTOMOB M HeC(PEepUUECKUX CYObEIMHUL, TPUBOS IPUMEPHI TOT0, KaK
paccuMTaTh CHJIbI U MOMEHTBHL. MBI TaKKe H3JI0KUM HEKOTOpbIE M3 AJITOPUTMOB
MOJIEKYJIIpHOM MHaMHuKU. HakoHen, Mbl KpaTKO CChUIaeMCsl Ha JETEPMHHAHTHI,
HEKOTOpbIE BIIUSIOT HAa pa3Mep CUCTEM M JJIMHY MPOTOHOB, KOTOPHIE LIEHHBI IS
pacuera CTaTUCTUYECKUX CBOWCTB.

MpbI oCylIecTBIIIEM KOMITBIOTEPHOE MOJEIMPOBAHUE B HAJEKAE OLEHUTH
CBOMCTBa COOPOK MOJIEKYJI C TOYKH 3PEHUSI UX CTPYKTYPbl U MUKPOCKOIUYECKUX
B3aUMOJICUCTBUI MEXJIYy HHUMH. OTO CIY)XKHUT MpUOABICHHEM K OOBIYHBIM
HKCIIEPUMEHTaM, IPEIOCTABIISAA HAM Y3HATh YTO-TO HOBOE, TO, YTO HE MOXKET OBIThH
IPOJAEMOHCTPUPOBAHO IPYTUMH [IPUEMAMHU.
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INTRODUCTION

Computer experiments represent the ultimate leading function in science. In a
specific physical experiment, the characteristics of the system under study are
recorded and the results are formulated in numerical form. In concept, the system
model is based simply in the form of a collective of mathematical equations. Next,
the susceptibility of the model is controlled to state the behavior of the system on a
few conceived variations of the implementation of the model, rather ordinary, in
order to allow fixing the solution of the equations. In most cases, this implies a
significant amount of changes in order to eliminate all the difficulties connected with
the tasks of a specific sphere and to fulfill the task being calculated.

Computer modeling sometimes appears as a theory, and sometimes as an
experiment. On the one hand, we are dealing with models, and not with a “real
object”, and this gives the right to systematize computer simulation like a theoretical
method. On the other hand, the operation of proving the validity of a model in
computer simulation strongly resembles an experiment: we turn on the calculations
and then analyze the answers in a significant degree in the same way as experimental
physicists do. How we are obliged to classify computer simulations, there is no
definite answer to this question. However, there is some meaningful reflection. One
way to understand the behavior of a classical many particle system is to simulate the
trajectory of each particle. This approach, known as molecular dynamics, has been
applied to systems of up to 10° particles and has given us much insight into a variety
of systems in which the particles obey the laws of classical dynamics.

A calculation of the trajectories of many particles would not be very useful
unless we know the right questions to ask. Saving these trajectories would quickly
fill up any storage medium, and we do not usually care about the trajectory of any
particular particle. What are the useful quantities needed to describe these many
particle systems? What are the essential characteristics and regularities they exhibit?
Questions such as these are addressed by statistical mechanics, and some ideas of
statistical mechanics are discussed in this chapter. However, the only background
needed for this chapter is a knowledge of Newton’s laws of motion.

In fact, any theoretical study of a difficult event traditionally rests on the
reduction path: a complex system is simplified to a collection of much natural
subsystems that can be explored using solvable models. When we see computer
modeling as a primitive practical tool for “proving and testing” a model in situations
that are extremely difficult for analytical discussion, we tacitly imply that the model
shows that “theoretical level” on which interest is concentrated.

Nevertheless, the main thing to know that modeling may be of more
significant and remarkable significance. We can analyze it not as a benefit of the
reduction approach, but up to a certain stage, as an alternative to it. Simulation
increases the limit of difficulty, which distinguishes between “solvable” and
“Intractable” models. We can use this threshold elevation in our horizons and
advance to an unusual level of complexity in our representation of physical systems.
Due to the potentialities of computer modeling, we can deal with incomparably more
complex models, compared with those that were practiced in the past. This gives us
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an auxiliary degree of freedom for studies and shows the latest features.

As one of the cases of this point of view, the problem of inter atomic potentials
can be thrown. In the past, inter atomic interactions were investigated using two-
particle potentials with an elementary analytical form, Morse or Lennard-
Jones species. Today, the most reliable potentials encompass multiparticle terms,
which are determined totally from first glances. These new potentials could not have
arisen without modeling; similarly, computer modeling is not only a link between
experiment and theory, it is also a significant tool for achieving growth in newly
acquired industries.
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1 Statistical Thermodynamics

Thermodynamics is a branch of physics that focuses on temperature and
energy. Though thermodynamics is based on a set of four axiomatic laws, engineers
whose goal was to maximize efficiency of steam engines have originally developed
this discipline. Statistical thermodynamics can successfully be applied to common
everyday processes. For example, thermodynamics can be applied to the Carnot
cycle that makes the refrigerator cool the beverages based on a refrigerant that
follows a cycle where it at one point condenses into liquid and then evaporates.
Thermodynamics can also be used to understand the meaning of an ice cube, where
the phase transition of solid ice to liquid water occur at constant temperature and is
due to energy absorbed by the ice cube. Another example of a thermodynamic
system is the combustion engine where mechanical work is generated by
compression and ignition of fuel.

1.1 First and second law of thermodynamics

The first and second laws of thermodynamic are two very useful statements.
They will in this chapter be used to quickly derive an expression for both entropy
and Gibbs free energy that can be used to evaluate the thermodynamic equilibrium
conditions of a thermodynamic system. Consider a tank of a gas phase and a liquid
phase, as shown in figure 1.1. There are N number of components in both phases.
The tank (the system) is isolated from the rest of the universe (the surroundings),
meaning that no heat or mass can be released/added to the tank. The gas phase and
liquid phase are touching each other at the gas/liquid interface. Molecules can
exchange between the two phases across the gas/liquid interface, as indicated by the
two arrows.

Gas

=\ o)
< &
Liguid

Figure 1.1 — Liquid/gas container

The first law of thermodynamics notifies that the internal energy of a closed
system is invariably stored. Energy can step over from one substance to another, but
it will never disappear. Energy can spread from substance to another as work or heat.
In relation to the tank in figure 1.1, the first law of thermodynamics for the sake of
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the liquid phase can be expressed as:
dyliquid — dQliquid + dwliquid 4 ¥ 'ul{iquid d Niliquid (1.1)
Moreover, the same for the gas phase:
dU9% = dQI% + dW9% + ¥ u]“dN* (1.2)

dU'a*id s the conversion of the internal energy of the liquid phase, dQ'9*!¢ is the
heat conversion for the liquid phase, the term dWw!a%id = —pliquid gy/liquid jg the
transformation mechanical work for the liquid phase and the term
1 gN M s a transformation of the chemical work for the liquid phase for
a multicomponent concept where i is the component. The same designation for gas
phase. The reformation of heat dQ in equation (1.1) and (1.2) is associated with the
change in entropy dS and absolute temperature T follows:

dS — erev;rsible > inrre;ersible (13)

The convertible process is a transformation that is invariably present in
equilibrium with the environments and does not have the generation of exact
entropy, and this means that equation (1.3) maintains equality. Such a process can
be achieved if infinitely small changes are made when the system moves from the
initial position to the final position. Similarly, for a reversible process, the system
reinforces the equilibrium with the embracing environment for any infinitesimal
change. On the other hand, the irreversible process is performed in such a way that
the change leads to the fact that energy leaves the system and entropy is formed, and
this means that equation (1.3) includes inequality. All processes in nature are
irrevocable. The reversible process is usually used as an ideal case and reference. As
for example, an internal combustion engine can be 100% efficient for a reversible
process, but in real life it is never 100% effective, for example, due to friction and
heat loss.

The second concept of thermodynamics notifies that for the irreversible
process, the total entropy of the system always progresses. It also means that heat
cannot naturally transfer from low temperature to high temperature. According to
the reservoir in figure 1.1, the second concept of thermodynamics can be expressed
as:

dStot > ds9es 4 dstawid > (1.4)
The infinitely small entropy change for each phase can be set as:

.o, liquid do9as
liquid _ aqQ gas __ Q
ds — rliquid and dS ~ Tgas

(1.5)

For the heat-insulated system, dQ!aU19——gQ93S \which determines that heat
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cannot be advanced or added to the reservoir system, equation (1.5) takes on the
character:

dQliquid

and dS9% = — dQI™

liquid _ __
as - Tliquid Tgas

(1.6)

Combining equation (1.4) — (1.6) with equation (1.1) — (1.2), the internal
energy for both phases can be expressed as:

dyliquid < Tgasggliquid _ pliquid jy/liquid Z‘u?quiddNiliquid,
(1.7)

dU9%s < THaUidgggas — paasqyaas 43 yI*dNI®  (L.8)

For an isolated system, the volume is conserved, meaning that dv 114U1d—_g\, 9as,
The total internal energy is also conserved, meaning that du 19uid ——qu9as, |n

addition, so is the number of molecules, which gives dN9U1d——gN92S: Those three
conservation laws combined with the expressions for internal energy for each phase
in equation (1.7) — (1.8) and with equation (1.4) gives an interesting expression for
the change in total entropy:

tot - gas poas pliquid gas __ gas
dS - [Tllquld - gas] dU + [Tllquid - Tgas ]dV Z Tllqutd -
liquid
K gas
L ] dNI® > 0 (1.9)

By combining equation (1.7) — (1.8) with the relation between Gibbs free
energy G, enthalpy H and entropy S and dG = dH — d(TS) (the so called Legendre
transformation), it is possible to obtain a very interesting term for the change in
Gibbs free energy for the liquid phase:

dGliquid < _gliquid gpgas | yliquid gpliquid 4 Z‘u;iquiddlviliquid <0 (1.10)
In addition, the same for the gas phase:
dGI%s < —§9asqThiauid 4 ygasgpgas + 3 ICGNIY <0 (1.11)

Equation (1.10) and (1.11) are very useful. They relate the change in Gibbs
free energy to easy accessible properties of the system, and they contain the three
thermodynamic driving forces that drive a thermodynamic system towards
equilibrium. -SdT describes the thermal driving force, related to change in
temperature. VdP describes the mechanical pressure driving force, related to change
in pressure.

2ui N; describes the chemical driving force, related to the exchange of particles.

1.2 Criteria for thermodynamic equilibrium
14



The transformation of the total Gibbs free energy is the sum of the change in
Gibbs free energy for each phase.

dG'ot = dGHe 4 dGI®s (1.12)

The system moves to balance with support dGOt <0 and dstot> 0. When a
system reaches equilibrium conditions due to mitigation of driving forces, then
dGtt = 0,, which can be stated as:

dGtot = dglanid 4 4G9as = 0 (1.13)
and
dgltiawid — _4;G9as (1.14)

This means that under thermodynamic equilibrium conditions, the total free
Gibbs energy is minimized. At the same time, the infinitely smallest change in the
Gibbs free energy of the liquid phase corresponds with a negative change in the
Gibbs free energy of the gas phase. At equilibrium conditions, there is no change in
temperature or pressure, so dT=0 and dP=0. Therefore, by combination of
equation (1.10)-(1.11) and (1.13), the total Gibbs free energy can written as:

dGtot — ZuéiquiddNiliquid + Z.u;:ganNigaS (1.15)

The total change in quantity N; (can be a change in e.g. number of molecules
or number of moles) is:

dNf°t = AN/ + dNF¥ (1.16)

Consequently, in equilibrium conditions, the transfer of molecules between
the liquid phase and the gas phase from one to the other is carried out with exactly
the same speed. It looks the same as in the reaction kinetics. When the reaction
appears in equilibrium, the direct and reverse reactions are performed at the same
rate. Similarly, in equilibrium:

dNf* =0 and  dN/T? = —dN7® (1.17)
Finally, the change in total Gibbs free energy can be written as:

dGtot = (Z Mgiquid _ Zﬂi'gas)dNiliquid -0 (1.18)

Equation (1.18) implies that 4 = 9%

i . atequilibrium.

When a system reaches equilibrium conditions, also dstot =o;
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tot _ 1 1 gas e Pliquid gas
dSs Tliquid Tgas du + Tliquid - T9as dv -
gas llquld gas
- Z [Tllquld Tgas l dN =0 (1'19)

At equilibria the two phases in figure 1.1 can coexist, which is a result from
minimization of the total Gibbs free energy and maximization of the total entropy.

Therefore, both dGot =0 and gstot =0, and the three thermodynamic equilibrium
conditions between liquid and gas phase can be expressed as:

Thermal equilibrium Tlaquid — Tgas (1.20)
Mechanical equilibrium ~ pliawid = pgas (1.21)
Chemical equilibrium ~ p'7'* = ;9% (1.22)

No system can achieve thermodynamic equilibrium [1,2]. This is because
there will always be some fluctuations in temperature, pressure and the number of
molecules between the phases. Often, when applying thermodynamic equilibria in
the presentation of a real process, this process is oriented as a quasi-equilibrium
process. For a quasi-equilibrium process, the changes in the transition of the system
from state 1 to state 2 are so small that it can be foreseen that the system is always
in equilibrium for each small change. Therefore, the term “quasi-equilibrium” will
be used when it is implied that the modeling carried out in this work has reached
equilibrium.

Free energy calculation. Equations (1.10) and (1.11) cover three
thermodynamic driving forces: thermal, mechanical, and chemical. Both
temperature and pressure can be simply fixed in many thermodynamic systems,
including those vital for our daily life. For example, almost all homes have a
thermostat that measures the outside temperature. Knowledge of the pressure and
temperature of liquids in the working blocks is important for the successful operation
of oil refineries and gas processing plants; therefore, numerous pressure and
temperature sensors are installed in pipeline systems. On the other hand, chemical
potential cannot be measured accurately.

Although the methods for calculating the chemical potential have been
prepared. There are two cases - the method of inserting particles Widom and the
method of thermodynamic integration. Both of them appear by computational
methods, convenient to calculate the chemical potential of a substance. In this
research work, the method of thermodynamic integration was chosen, since it could
be relatively simply carried out within the framework of purely molecular-dynamic
modeling of arbitrary density. The method of introducing particles to Widom will
require an auxiliary sample and does not guarantee that it will work for modeling
involving dense phases [3,4,5,6]. In short, the Widom particle insertion method
Is built on a sample of the probability that a test particle will be installed in the
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system. A much thoroughly explained method of thermodynamic integration is
formed on finding a reversible approach by which the system follows from its initial
state to the final state. The system is an isolated one-component system with a
constant number of particles at a constant temperature. The discovery of this method
can be done by a system modeling approach for a variety of constant temperatures
and measuring the potential energy per molecule for each simulation. Then you can
create a graph of potential energy per molecule from 1/T. The potential energy per
molecule in the simulation system should be measured for temperatures ranging
from normal conditions (for example, 298 K) to infinitely high temperatures.
Further, the polynomial function can be adapted to a series of information in the
potential energy per molecule against the 1/T graph. The obtained polynomial
selection function describes the approach by which the system passes from its initial
to the final state. The initial state is the potential energy per molecule at the normal
temperature of the system, and its final state is the potential energy per molecule at
the theoretical infinite temperature. In the final state, the system will behave like an
ideal gas. For an ideal gas, free energy and chemical potential are established. The
basic integration method can be used to solve a polynomial similarity function.

The integrated function can be demonstrated as [38, 39]:

i T ir: .
ureSLdual — Tinitial Tfl?nz:lllal Ureszduald(l/T) (1.23)

where gresidual js the residual chemical potential and Uresidual js the
residual potential energy per molecule [38].

The total chemical potential ﬂtOt can be expressed as:

#itot — ’uz‘esidual + ‘ul{'dealgas (1.24)
The method of thermodynamic integration with equation (1.23) provides for
calculating the residual chemical potential of the substance of a real system. The
chemical potential of an ideal gas can be calculated analytically. Unobtrusively, this
is the total chemical potential that is used to compare the chemical potentials of
various substances [7, 8, 9].
The chemical potential can also be defined in terms of thermodynamic state
functions. Some examples are (at constant Nj where j£i):

b= ), = ), = ), o= (), 029

They all tells us how the state variables Gibbs free energy G, internal energy
U, enthalpy H and Helmholtz free energy A change when one more particle is added
to the system by holding the respective state variables temperature T, pressure P,
entropy S, volume V constant. Therefore, the chemical potential can be defined, as
the work required adding one more particle to the system. The chemical has an
energy Sl unit in kJ/mole. Heat flows from a system with high temperature to a
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system with low temperature, a rock falls from high to lower height and molecules
diffuse from a region with high chemical potential to a region with lower chemical
potential.

1.3 Statistical mechanics. Statistical mechanics. Ensembles in
statistical mechanics. Coupling between microscopic and macroscopic
properties

The basis of statistical mechanics is probabilistic propagation. The statistical
path is used to represent physical phenomena due to the extremely large number of
molecules. A significant number of molecules is detected by the Avogadro number,
Na = 6.023 - 1023 molecules / mol. An example of the application of probability
theory in statistical mechanics is the Maxwell-Boltzmann velocity distribution.
Maxwell and Boltzmann studied that for each temperature there is a probability
distribution of the velocity of molecules. This means that the molecules do not move
at the same speed, but for each temperature, each speed a molecule may have has an
established probability. This principle is illustrated in figure 1.2 with the number of
molecules (proportional to probability) along the Y axis and velocity along the X
axis. The distribution is for ideal gases, which means that the molecules do not
interact with each other, with the exception of collisions.

As an example of the molecular velocity, the most probable Maxwell-
Boltzmann velocity of the nitrogen molecule (N) in air is 422 m/s.

/N

T=250K

T=350K

Number of molecules

N
7
Velocity
Figure 1.2 — Illustration of Maxwell-Boltzmann velocity distribution

Ensembles in statistical mechanics. The main goal of statistical mechanics is
to detect the macroscopic properties of the system, considering it from a molecular
point of view. The ensemble consists of a set of microstates, all of which are limited
by certain macroscopic properties. In explaining what a statistical ensemble is, let
us start with a representation of a large box system with four walls containing gas
molecules. In figure 1.3, gas molecules are shown in green dots.

Figure 1.3 illustrates the idea of statistical ensembles and microstates. The
18



concept is that if we follow the system in time, for example, as a result of molecular
dynamics modeling, the system will be in a new microstate for each time interval
due to molecular interactions and movement. Each microstate in the ensemble is
localized by some fixed macroscopic properties of the system.

Figure 1.3 illustrates only the position of the gas particles in the system. In
both classical and statistical mechanics, each particle also has an impulse p = mv,
where m is the mass of the particle, and v is the velocity of the particle. The basic
position xyz and the momentum for each particle are usually described by the phase
space. The dimension of the phase space is 6N, where N is the number of particles
in the system. That is, 3 measurements for Cartesian Xxyz-coordinates and 3
measurements for each component of the particle momentum.

NVT ensemble

NVT ensemble

X

=Y ® P
g ™ ® L e o
) 3 °
y e » @
z & ® ® ®
™ ® t y ®
> 1 z @ =)

a) time t1 b) time t2
Figure 1.3 — Illustration of NVT ensemble and microstates

The atomic and molecular properties can be different for each microstate,
which is just natural because the molecules change their position and momentum
each period. In a), the time is t;. At this period, the system is in a certain microstate.
In b), the time is t,. From t; to t,, the system changes its microstates because the xyz-
position and the momentum of the molecules are updated. The microstate that the
system is in at both time t; and t, are constrained by the governing statistical
ensemble. In this case, each microstate have to correspond to the NVT ensemble.
For the NVT ensemble, each microstate must have the same number of molecules
N, the same volume V and give the ensemble temperature T.

Table 1.1 — Some examples on statistical ensembles and their fixed macroscopic
properties

Ensemble Constant macroscopic variables

Canonical N,V, T
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Isothermal-Isobaric N,P, T

Micro canonical N,V, E

Grand canonical Nuw T

There are many statistical ensembles. Some of them are specified in table 1.1
with matching macroscopic properties constants that identify the ensemble. The
macroscopic properties that are fixed for each system in an ensemble can be
controlled by accepting an adjustment of the boundaries that the system has with its
environment. For example, for a system in a canonical ensemble, the temperature
can be kept on average constant, making the system an isolated system surrounded
by a thermostat, so that thermal energy can be supplied to the system to adjust the
temperature.

Hamiltonian is closely interconnected with the phase space. Hamiltonian is
the total energy of the system. This is the sum of the potential energy and kinetic
energy and can be expressed as:

2
H(q,p,t) =U + KE = U(q1,9z2 -, qn) +Z§V=12p_,;i (1.27)
where particle i with mass m; will have the position ¢; and momentum p; in the
phase space.

Coupling between microscopic and macroscopic properties. The
decomposition function can be derived for each statistical ensemble. The separation
function can provide information about the available microstates for the system in a
given ensemble, and it is a function of the thermodynamic unstable state. It can also
be detected as the volume that the system captures in the phase space. Similarly,
partitioning functions are the link between microscopic and macroscopic properties.
The microstate is a point in the phase space, and the macrostate is the distribution of
probabilities in the phase space. The disadvantage associated with the use of
separation functions in an application is that they are very advanced to solve. For
example, the separation function for a microcanonical ensemble can be fixed as:

Q(N,V,E) = My [ 6(H(q,p,t) — E)dl’ (1.28)

where Q is the number of microstates belonging to the microcanonical
ensemble;

My is the microcanonical ensemble normalization factor;

E is the microcanonical ensemble energy and 7" is the phase space
volume [10]. Additionally, the separation function for a canonical ensemble can be
obtained from the microcanonical ensemble by connecting the system with an
unlimited large external heat reservoir, and it can be expressed as:

Q(N,V,T) = Cy [ e~ H@PD/Tksqr (1.29)
20



where Q is the number of microstates belonging to the canonical ensemble,
Cyis the canonical normalization factor and kis the Boltzmann constant [11,12].
In the case of the microcanonical ensemble, each microstate with a total
energy H(q,p) within a certain range of the ensemble energy E can be assumed to
have the same probability. All the microstates that do not satisfy this ensemble
energy can be assumed to have 0 probability. Thus, for the microcanonical ensemble,
at equilibrium conditions, the probability Pv for finding the system in a particular
microstate v is:
1
k= Q(N,V,E)

(1.30)

And the entropy can be defined as:
S =kglogQ(N,V,E) (1.31)

In molecular dynamics simulation studies, usually the Ergodicity theorem is
used as a link between the microscopic and the macroscopic properties. In molecular
dynamics simulation, we follow the time evolution of the system on a microscopic
level. We know the initial start configuration of the molecules in the system and use
classical mechanics Newtonian equations of motion to follow the trajectories and
evolution of the system.

The Ergodicity theorem states that for both large enough time and large
number of molecules, the ensemble average (A) is assumed to be the same as the
time average
A (t). The theorem can be expressed as:

lim 400 = (4) (132)

The ensemble average can be analyzed as the average for all microstates in
the phase space. It is preferable that the system provides the entire phase space
during the entire simulation time, visiting all possible microstates for given fixed
thermodynamic properties of the ensemble, but in reality this is impracticable due
to, for example, information losses. The average time can be recognized as the
average for all microstates that the system spends during the simulation run.
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2 Theoretical basis and numerical method

2.1 Molecular dynamics. Governing equations

A significant advantage, the characteristic molecular dynamics modeling, is
the feasibility of having a molecular level of control, visualization and numerical
analysis. In many supplements of research and optimization, this is an absolute need,
for example, for adsorption processes, where selectivity and diffusion can be really
understood at the molecular level. The main goal of molecular dynamics modeling
IS to gain a deeper understanding of molecular interactions and trajectories that could
not be otherwise understood. Conjunction, simulations tend to be as realistic and
physical as possible and to simulate a real experiment. Molecular dynamics
modeling can be considered as a converter between the microscopic world of
molecular statistical mechanics and the macroscopic thermodynamic world [13, 14,
15].

Governing equations. The illustration of the system belonging to the gas
molecule box in figure 1.3 can be related to the molecular dynamics simulation.
When modeling molecular dynamics, knowing the initial configuration of the launch
and some signifying equations of motion, the evolution of particles over time can be
approximated. Based on equation 2.1, the total force F acting on each atom in the
system can be found by the generally negative gradient of potential energy U (r)
between two atoms separated by distance r:

F =—-VU(r) (2.1)

The classical mechanics of the equation of motion of Newton is applied to the
numerical gradual calculation of the total force acting on each atom in the system.
The initial configuration of the components in the simulation system is determined,
and then equation (2.1) is used to calculate the total force acting on each atom in the
system and their accelerations.

This gives a time evolution of the system, and the position and momentum of
each atom is restored every time step. As mentioned earlier, the position of an atom
in phase space is represented by a function (q, p).

2.2 Integration of the equations of motion. The Verlét algorithm

Newton’s second law can be stated as:

2.
Fi =m;a; = % (22)
where F; is the total force on particle i;
m; 1S the mass;
a; is the acceleration;
q; 1S the position vector;
t is the time.

Combining equations (2.1) and (2.2), it is possible to calculate the acceleration
22



of each particle for each time interval. When modeling molecular dynamics, it is
essential to have an integration algorithm to advance the system over time.
Modifications of such algorithms exist. Two examples are the Verlét algorithm and
the Leap-frog algorithm. The Verlét algorithm will be used for temporal integration
of modeling in this work and will be extracted soon below.

Equation (2.2) is a second order differential equation. It would be more
feasible to write it as two first order differential equations to more easily access the
velocity vector v; and the position vector g;:

dv;

F;, = mid—li (23)
dqi

v =1 (2.4)

The Verlét algorithm. One of the best-developed time integration algorithms
1s the Verlét algorithm. The derivation of the Verlét algorithm starts by considering
the Taylor expansion for the position g; for particle i for time (t +- A¢):

aq; 1 (d? i 1(d? i
q;(t + At) = q;(t) + (d—‘i)t At + E(dt‘i )t (A6)* + = (d—tqg)t (AD)3 +
+0(At)*

(2.5)
ai(t =80 = i(0) - () ae+3(52) @02 -2(52) @+
+0(At)* (2.

6)
where At is the time step [43,44]. By adding equation (2.5) and (2.6), the result
IS:

ai(t+80) = 2:(0) — a(t - 80 + (T2) @02 +0@0*  (@7)

dat?

Equation (2.7) is called the Verlét algorithm. O (A t)4 Is the truncation error
of the algorithm and is the difference between the approximated Taylor expansion
and the true smooth function. By choosing a large time step Az, the clipping error
will be greater than if a minor step was chosen. Notice that in equation (2.7), the
velocity term vi = (dqi / dt )¢ is cancelled out. By applying the numerical finite
difference method, the velocity can be obtained:

Ui(t) — (CIi(At)—CIi(t—At)) (28)

2At

The Verlét algorithm makes it possible to calculate the new position ¢; at time
(t+At) for all the particles of the system, and to do this, both the position g; and
velocity v; at current time t as well as the position at previous time (t-A¢) are required.
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The time step Az is often chosen to be 1 femtoseconds (10'15 seconds) in molecular
dynamics simulations.

2.3 Force fields. Bonded interactions. Bond stretching. Angle bending.
Non-bonded interactions. Van der Waals interactions. The Lennard-Jones
potential. Electrostatic interactions

Force fields are the key and the basis for molecular dynamics modeling. They
also provide the input parameters used by the governing equations of motion to
calculate the position of atoms in the phase space. Each atom in the system is
described by a set of parameters of the force field. There are many different types of
force fields, and the choice of the “right” for the modeling system and conditions
can be crucial for quality results. The total potential energy Uy is often divided into
two groups:

Utot = Ubondea t+ Unonbonded (2.9)

Bonded interactions. The first constituents of the total potential energy in
equation (2.9) is the bonded interactions Uyongeq. It Can be expressed as:

Ubonded = Ubond + Uangle + Udihedrals + Uimpropers (2-10)

Inherently, linked interactions are also called intramolecular interactions,
because they hold atoms in a molecule together in the system under study. Two
molecules that will be used in this work (water and gas); they both have the potential
to stretch the bond and bend the angle, but they do not have dihedral or irregular
potentials because of their usual triatomic molecular structure.

Bond stretching. The corresponding length of chemical bonds between two
atoms in a molecule changes due to vibrations. Changes in bond length are very
often described with the potential for stretching a harmonic bond. Hook's law is
usually used to describe how the bond stretching potential energy Upong (1) changes
as the bond length oscillates around its equilibrium length reg:

1 2
Upona (T) = Ekbond (T - req) (2-11)

where r is the distance between the two atoms from atomic center to atomic
center;
Koong 1S the bond stretching constant. A higher bond-stretching constant
would result in bonds that are more rigid.
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Figure 2.1 — Illustration of intramolecular harmonic bond stretching between two
atoms that makes up a molecule. Ball/spring model

Figure 2.1 illustrates this idea, showing two spheres connected to a spring.
Each ball is an analog of the atom, and the spring is an analog of the connection
between them. Some force field models consider chemical bonds as rigid, which
means that bonds cannot stretch and bond lengths are unchangeable in simulation
time.

Angle bending. Similar to the length of the bond between two atoms, the angle
between the three atoms will repeatedly transform over time due to molecular
vibrations, as shown in figure 2.1. Potential energy as a function of angle can be
demonstrated through the harmonic potential according to the Hook's law:

1 2
Uanglebending (0) = Ekangle(g - eeq) (2.12)
where @ is the angle between three atoms in the same molecule;

Ocq is the equilibrium angle;
k, is the angle-bending constant.

> geq

Figure 2.2 — lllustration of intramolecular harmonic angle bending between three
atoms that makes up a molecule. Ball/spring model

Non-bonded interactions. Low-bound interactions are represented both intra-
and intermolecular, and they can include interactions with all other atoms in the

system. They can be sorted into two types: far and near. Long-range interactions are
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electrostatic forces, usually depicted in models according to Coulomb's law. Short-
range interactions are Van der Waal (vdw) interactions and are usually depicted by
the Lennard-Jones model or the Buckingham model. The non-bonded interactions
Unon—bondeq Can be expressed as:

Unon—bonded = Uelectrostatic + Uvdw (2-13)

Van der Waals interactions. The Lennard-Jones potential. The VVan der Waal
interactions constitute of three forces, namely Keesom forces, Debye forces and
London dispersion forces, as shown in equation (2.14).

Uvdw = UKeesom + UDebye + ULondon (2-14)

The three parts of the Van der Waal forces are due to different electrostatic
interactions:

- Keesome forces: stationary dipole - constant dipole interactions;

- Debye forces: stationary dipole-induced dipole interactions;

- London dispersion forces: induced dipole - induced dipole.

Keesom forces are interactions between two stationary polar molecules. The
polarity of molecules can be, for example, dipole-dipole interactions or quadrupole-
quadrupole interactions. The polarity of the molecule arises from the difference in
electronegativity between the atoms in the molecule.

The Debye forces are interactions between a molecule with a constant dipole
and a molecule with an induced dipole. The induced dipole moment of the molecule
IS due to the time polarization of this molecule, which occurs in the presence of a
polar molecule.

London dispersion forces are the interaction of two non-polar molecules. This
interaction force is predetermined by the time polarization of non-polar molecules
due to the motion and various concentrations of electrons in the electron cloud
surrounding the atoms of the molecule. The Van der Waal interactions are short-
range and considered as weak forces. They can be written as:

Upaw = Urepulsion +
Uattraction (2-15)

The Keesom, Debye and London dispersion forces are the attractive
contribution of the VVan der Waal forces and can be expressed as:

Uattraction = UKeesom + UDebye + ULondon (2-16)

The most common mathematical model that describes the short-range Van der
Waal forces is the Lennard-Jones potential:
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U, (r) = 4¢ [(%)12 - (3)6] (2.17)

T

where ¢ is the well depth of the potential;
o 1S the Van der Waal radius;
¢ and o are the parameters that makes the Lennard-Jones potential
unique for each component of a simulation system. They can be fitted to
experimental data or approximated with advanced quantum mechanics calculations.
There is a certain distance between atoms where the force between them is 0.
For a greater distance than that point, an attractive Lennard-Jones force is yielding.
For a less distance, a repulsive Lennard-Jones force is yielding.
This is illustrated in figure 1.6. For the Lennard-Jones potential, given by

equation (2.17), the attractive forces decrease as a function of 1/r6 and the repulsion

contribution of the VVan der Waal force fall off as 1/r12. The repulsion happens when
two intermolecular atoms are too close and the electron clouds overlap. As the
electron clouds overlap, the positively charged nuclei of the atoms results in
repulsion according to Paulie's exclusion principle.

TN

Repulsive force

Potential energy (kj/mole)

“~— Attractive force

-
T Force=o0

~
Distance (A) 7

Figure 2.3 — A general form of the Lennard-Jones 12-6 potential interactions
between two similar atoms. Potential energy U(r) vs distance between the atoms r

The Lennard-Jones interaction potential is perhaps the most well known, but
also unlimited use of Buckingham's potential [17]. Buckingham's potential has a
softer repulsion [17], which means that the repulsion curve will not be as steep as
the Lennard-Jones repulsive interaction curve in figure 2.3. The Buckingham
potential has three parameters, that is, A, B, and C, compared with the two
parameters €, ¢ in the Lennard-Jones potential. Buckingham potential can be written
as [18]:

Cc
UBuckingham(r) =AXexp(—B Xr)— s (2.18)

Note that the attractive portion of Buckingham’s potential also complies as

1/r6. Buckingham's potential has the advantage that the repulsive part expresses
itself exponentially because it makes it more physical than the repulsive part for
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Lennard-Jones potential [19]. However, on the other hand, the three interaction
parameters for Buckingham's potential make it computational more precious.

Electrostatic interactions. Electrostatic fragmentary interactions function over
great distances and are considered as powerful forces. For many force fields, the
partial charges established for each atom are calculated based on differences in
quantum mechanics and electronegativity. This provides to simulate, for example,
the dipole moment of water. The partial charge of each atom appears in the center
of each atom; therefore, electrostatic interactions can also be called simple point
charge interactions. By introducing electrostatic interactions to simple point charge
interactions, Coulomb's law can be used to calculate electrostatic forces between two
atoms. Coulomb's law can be demonstrated as:

1 QiQ;
Ucoulomb = 4llege, X |7'ij|] (2.19)
where Q; and Q; are the partial simple point charges for atom of type i and j;
Ir| is the absolute distance vector between the two atoms;
go IS the permittivity of vacuum and &, is the relative permittivity [20,
21].

2.4 Periodic boundary conditions

Consider the system consisting of a box of atoms, as shown in figure 2.4.
Imagine that the system is open, so the six surface walls of the box have no mass or
interactions. This means that when the simulation opens, and the atoms undertake to
interact and move, some of them are likely to leave the box volume. When these
atoms go out of the box, they cross the lines of the open system. Thus, the number
of atoms in the system is not conserved, and the density of atoms in the box will
decrease.
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Figure 2.4 — A box of atoms

To address this problem, periodic boundary conditions (PBC) are applied to

the modeling system to make it a periodic system. figure 2.4 illustrates the concept
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of periodic boundary conditions. In figure 2.4, the rectangle in figure 2.3 is for
simplicity shown in two dimensions. The original box is a box in the middle with
dark red atoms. In such a two-dimensional space as when periodic boundary
conditions are correctly applied to the modeling system, there will be a copy of the
original box on each side of the original box. The atoms of the copied boxes are
colored light red. So, the idea with periodic boundary conditions is that each of the
blocks, 9 blocks in this example, will have exactly the same movement as the next
block when the atom moves up and into the next block.

When this happens, a copy of this atom will also fall into the box from which
it came, from the next box below. This means that an atom that moves from the
source box and into the box above, this atom will repatriate back to the source box

T 0 1
T T T
I ..‘ .: I
7 « fe |-

from below.

Figure 2.5 — Illustration of a periodic system

Thus, using periodic boundary conditions to the system, it is possible to keep
the density of the system constant over time. It also allows you to simulate an
infinitely large three-dimensional system in periodic instructions, even with a small
number of atoms.

2.5 Temperature control. The Berendsen thermostat. The Nosé-Hoover
thermostat. Pressure control

From the illustration of the Maxwell-Boltzmann distribution over the velocity
of ideal gases in figure 1.2, it can be seen that a higher temperature gives a higher
probability of the existence of molecules with a higher velocity. This leads to a
relationship between temperature and average kinetic energy. ( KE ):

(KE) = ~¥imi(vf) = >k T (2.20)

where m; is the mass of particle i;
v; is the velocity of particle i;
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ky, is the Boltzmann constant and T is the temperature.

A predominantly natural ensemble in the modeling of molecular dynamics
would be the use of a microcanonical ensemble due to the conservation of energy
and Newton's equations of motion. Nevertheless, in real life, the vast majority of
experiments take place under conditions of constant temperature, not constant
energy. When the canonical ensemble is used to model molecular dynamics, it is
imperative to use a thermostat to maintain a constant temperature. There are many
computational algorithms for this purpose. Three examples are the Nose-Hover
thermostat, the Berendsen thermostat and the Anderson thermostat.

The goal with a thermostat is to maintain a constant average system
temperature. For each time step, the system will be in a new microstate with a new
instantaneous Kinetic energy. If the kinetic energy of each time step were kept
constant, it would have affected the system too much. Thus, when modeling
molecular dynamics, when a thermostat is used, the temperature will fluctuate
around the average temperature of the thermostat. Although it is important to
remember that fluctuations are usually smaller for a system with a large number of
particles.

The Berendsen thermostat. The Berendsen thermostat uses velocity scaling to
control the temperature [22]. The velocities are scaled each time step and the
temperature of the system is controlled by the equation:

TO =2 (1, - T()) (2.21)
where T(t) is the temperature of the system at time t [23, 24]. T, is the
temperature of an external hypothetical heat bath that the Berendsen thermostat uses
to maintain the temperature of the system by coupling the two thermostats with the
coupling parameter 1. Both Ty and z are often used as input parameters in a run script
for a molecular dynamics simulation. The value of the communication parameter
fixes how active the thermostat is and how much the thermostat acts on the system.
On average, the goal is to ensure that the temperature of the system is the same as
the required temperature T,.

The Berendsen thermostat showed good tendencies toward the equilibrium of
a non-equilibrium system [25]. Another advantage of the Berendsen thermostat is
the simplicity of the code; it follows from this that it is easy to implement. However,
it has some drawbacks: it is often said that it cannot generate the canonical splitting
function (it cannot create the correct statistical ensemble) [25], it can generate a
discontinuity in the trajectories of the phase space, it is non-ergodic and not
reversible in time [25]. However, in practice, the magnitude of the deviation from
the canonical distribution is inconspicuously small enough [25].

The Nosé-Hoover thermostat. Nosé came up with a set with equations in
1984 [26] before Hoover in 1985 improved and simplified those equations to make
the the Nosé-Hoover thermostat [27].

Equalities used in the Noose-Hoover algorithm provide other modifications
of Newton's equations of motion. An external thermal bath is added to the system,
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which gives atoms an auxiliary degree of freedom. Due to this heat bath, the total
energy of the modeling system changes. Thus, the additional kinetic energy and
potential energy are added to the total energy [28, 29]. Heat energy can spread
between the system and the thermostat. In short, the equation of motion for an
additional degree of freedom is solved. This equation can be expressed as the
expansion of the Hamiltonian with an auxiliary degree of freedom [29]:

In(s)
B

N D} {2Q
Hyosé—Hoover = Zi ZT:li + U(Ql' ) QN) + Yy + (3N)

(2.22)

In equation (2.19), the two first terms are the kinetic energy and potential
energy previously defined for the classical Hamiltonian. Nosé and Hoover add the
two next terms, and all together, they make up the Hamiltonian used in the Nosé-
Hoover thermostat. {'is the thermodynamic friction coefficient and s is a time scale
variable and is associated with the external heat bath reservoir.

The Nosé-Hover has the advantage of producing the canonical distribution as
well as being deterministic and time-reversible for equilibrium systems [28].
Nevertheless, as a drawback, it can result in a non-ergodic system if becoming
trapped in a subspace [28].

Pressure control. For an isothermal-isobaric ensemble, it is imperative to use
a barostat to control the pressure. Two examples of such barostats are the Nose-
Hoover barostat and the Berendsen barostat.

In short, both the Berendsen barostat and the Nose-Hoover barozate inspect
the system pressure by adjusting the volume of the box. The pressure of the virial is
calculated, and then the volume of the modeling block may fluctuate (probably to
obtain a statistical ensemble pressure), so that the required pressure is reached.
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3. Visualization Tools and Graphics Programming
3.1Matlab - as a means of mathematical modeling

MATLAB is one of the oldest, thoroughly developed and time-tested systems
for automation of mathematical calculations, built on an extended view and
application of matrix operations. This is reflected in the name of the system - Matrix
Laboratory - matrix laboratory.

The possibilities of MATLAB are very extensive, and the system often
surpasses its competitors in speed of performing tasks. It is applicable for
calculations in almost any field of science and technology. For example, it is very
widely used in mathematical modeling of mechanical devices and systems, in
particular, in dynamics, hydrodynamics, aerodynamics, acoustics, power
engineering, etc.

MATLAB is a high-performance technical computing language that combines
computing, visualization, and programming in a common to use environment where
problems and solutions are demonstrated in a familiar mathematical notation.
Typical attachments include:

— Math and computing;

— Development of a numerical algorithm;

— Simulation and simulation;

— Accurate analysis, research and visualization of results;

— Scientific and engineering graphics of the system under study.

The name MATLAB stands for Matrix Lab. MatLab has the highest speed of
numerical calculations. However, matrices are widely practiced not only in such
mathematical calculations as solving problems of linear algebra and mathematical
modeling, calculating static and dynamic systems and objects. They are the basis for
the automatic preparation and solution of the equations of state of dynamic objects
and systems. Actually, the versatility of the matrix calculator significantly increases
the interest in the MatLab system, which encompasses the best achievements in the
industry of quickly solving matrix problems. Therefore, MatLab has long gone
beyond the boundaries of a specialized matrix system, becoming one of the most
powerful universal integrated systems of computer mathematics [30].

3.2Mathematical model of the statistical system
Setting the goal of understanding the qualitative properties of systems
consisting of a large number of particles, we simplify the problem by assuming that

the molecules are chemically inert and their movement is classical. In addition, we
will assume that the interaction force of two molecules depends only on the distance
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between them; therefore, the total potential energy U is determined by the sum of
the energies of two partial interactions:

U=V (rp) +V (riz) +.. 4 Virps) +..= £V<j:1 V(rij) (3.1)

where V (r;;) depends only on the absolute value of the distance 7;; between
particles j and i. The pair interaction model adequately describes “simple” liquids,
for example, liquid argon.

For electrically neutral atoms, it is theoretically possible, using the laws of
quantum mechanics, to obtain an analytical expression for the function V (r).
However, firstly, such a calculation turns out to be quite cumbersome, and secondly,
for most tasks it is sufficient to use a simple phenomenological formula that takes

into account that for small r the interaction force between the molecules 13(17) =

—VU(#) is the repulsive force, for large r - the force of displacement. Repulsion in
accordance with quantum mechanical representations is due to the Pauli prohibition
rule [6]. The weak attraction at large r is mainly due to the mutual polarization of
each atom. The resulting force of attraction is called the VVan der Waals force. Thus,
when using the two-particle interaction model, the task of describing the behavior
of the statistical system is reduced to choosing the type of potential V (#) and solving
the Cauchy problem for a system of differential equations:

azrn _ =3 —
mgtr—z— - VZév<j:1 V() (3.2)

One of the most commonly used phenomenological formulas for describing
the potential of intermolecular interaction is the Lennard-Johnson potential:

v(r) = 4V, [(g)lz - (5)6] (3.3)

r

where o defines the “characteristic” length of the potential, and V,, is the depth
of the potential well, which we will later choose as units of measure for distance
# = r /o) andenergy (V" =V (r) /V,). As can be seen from (3), the potential V (r)

1
reaches its minimum value - V, at the point r;,,;,, = 26 o, V (r) = 0 at the point 1, =
O.
To select the variable T used to dimension the system of equations of motion
(3.2), we expand the potential V (r) into a Taylor series near the potential

1
minimum r,,;,, = 2¢ 0. Keeping the terms of the series proportional to the first and
second derivatives and citing similar terms, we finally get:
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V(Ar)

2
18 - 23

= _VO + 0_2

VoAr? (3.4)

where Ar <<ry,;p-
Comparing (3.4) with a known expression for the potential energy of a
harmonic oscillator

E:%kxz, (3.5)
we conclude that

2
_2-18-23

o2

Vo
(3.6)

Is an analogue of the spring constant of a harmonic oscillator, i.e., a particle located
in the Lennard-Jones potential, at small displacements from the minimum point will

perform linear harmonic oscillations with a period T=2n,/m/y. (For example, for
liquid argon, for which V,/kz=119.8 K (kgis the Boltzmann constant).

o = 3.405- 1078 cm, mass m=6.69-10723 g, T=1.14-10"11 s, next we will
use T for dimensioning time (£=t/T).

Passing in (3.2) to the dimensionless variables # =1/a, V = V(r)/V,
t=t/T, taking into account expression (3.6), we obtain the final expression for the
dimensionless system of equations of motion

azn _

] d g
2372 = ~ =~

IR R T (7). 37)

The system of differential equations (3.7), supplemented by the initial

conditions 7:(0), 7,(0)), is a mathematical model of the statistical system under
consideration.

3.3 Numerical algorithm for solving the system of equations of motion

After compiling a mathematical model of a system consisting of a large
number of interacting particles, one should choose a numerical solution algorithm,
the accuracy of which depends directly on the correct choice.

Analysis of low-order accuracy algorithms, such as the Euler algorithm and
the Euler-Cromer algorithm, shows that these algorithms cannot ensure the
conservation of energy in the time intervals considered when modeling molecular
dynamics. In these conditions, it is necessary to apply computational algorithms that
have a higher order of accuracy, one of which is the Verlet algorithm. We illustrate
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the essence of this algorithm, following [31], by the example of solving a system of
equations of one-dimensional particle motion

d
—~=aq, (3.8)
d
~=v (3.9)

We write the expansion of the dependences x,,.; = x(t,, + At) and v, =
= v(t, + At) into a Taylor series

Xpor = xn + X(t,)AL + %x(tn)(At)z + 0[(AD)3], (3.10)

Vi1 = Vp + 0(t,)At + O[(At)?] (3.11)

Noting that x(t,,) = v,, X (t,) = v(t,) = a,will rewrite (3.10), (3.11) in the
following form

Xns1 = Xn + VAL + 2a,(A6)? + 0[(A1)], (3.12)
Vps1 = Up + apAt + O[(AE)?]. (3.13)

By analogy with (3.12), (3.13) we write the decomposition in the Taylor series
for x,_, = x(t, — At):
Xp_q1 = Xp — VAt + iatn(At)2 : (3.14)

Add (12) and (14), we get
Xpi1 + X1 = 2%, + a,(At)?, (3.15)
from where
Xpi1 = 2Xn — Xp_q + a,(AL)2. (3.16)

Subtracting (3.14) from (3.12), we finally get

_ Xn+1 " Xn-1
v, = YV (3.17)

The global error of the Verlet algorithm realized by formulas (3.16), (3.17)
has the third order for the coordinate and the second order for the velocity. Note that
the speed is not involved in the integration of the equations of motion; therefore, in
the literature devoted to numerical methods, this algorithm is called an “implicit
symmetric difference scheme”. The obvious disadvantage of the implicit difference
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scheme is that it is not self-starting, so you have to use a different algorithm to get
the first few points.
This deficiency can be eliminated by adding and subtracting from both sides of

equality (3.17) the value x,,/2:

1 1
Xn+1 = Xn + E(xn+1 - xn—l) - Exn—l - Exn+1 + Xn + an(At)z =

= x, + v, At — %(xn+1 — 2%, + x_1) + a,(At)? (3.18)

From (3.16) we find

Xn+1—2Xn+tXn—1

a, = 202 (3.19)
therefore (3.18) can be written as
Xpn41 = Xp + VAL + %an(At)2 : (3.20)
In a similar way, we rewrite (3.17) for v, and (3.16) for x,,,,:
Uppy = SR (321)
Xpiz = 2Xnp1 — Xp + pyg(At)? (3.22)
respectively.
Substituting (3.22) into (3.21), we obtain
Xp41+Vns1 At +50n41 (A2 —xp
Uny1 = = (3.23)

Then, repeating the described procedure x,,,, from (3.16) and substituting
Xn41 1N (3.23), after the obvious calculations, we finally learn

1
vn+1 - Un + E (an+1 + an)At (324)

The computational scheme defined by expressions (3.20), (3.24) is
mathematically equivalent to the Verlet algorithm described above. This scheme,
called the velocity form of the Verlet algorithm, is self-starting, and therefore does
not require the use of any additional computational algorithms. A description of
other computational schemes used to solve the equations of motion is given in [32].

When using the MD method for modeling the behavior of gases and liquids,
as a rule, it is assumed that the system in question is located in a certain cubic cell -
the MD-cell. We assume that the MD-cell has a linear size L, its volume isV = L3.
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Using a cubic lattice generates six unwanted surfaces. Particles reflected from these
surfaces will return inside the cell, so the edges of the cell will make a significant
contribution to the macroscopic characteristics of the system, especially for systems
with a small number of particles. To reduce the described effect, it is customary to
introduce periodic boundary conditions [8] (figure 2.1), the mathematical
formulation of which for any observable quantity A has the form:

A(P)=AQF + L), (3.25)

where 7t = (ny,n, n3),anyn,nz-indices of integers.

L

X

Figure 3.1 — An example of periodic boundary conditions in the two-dimensional
case. The rule of the nearest particle means that the length of the vector indicated
by the bidirectional arrow determines the distance between particles 1 and 2

This algorithm has the following computational implementation: when a
particle crosses the face of the main cell, it returns to the cell through the opposite
face at the same speed. By introducing periodic boundary conditions, the influence
of faces is eliminated and a quasi-infinite volume is introduced to more accurately
describe the macroscopic system, i.e. The MD cell is “embedded” in the area. Each
component of the translation radius vector is a number between zero and L. For the
i particle located at the point with the radius vector 7;, there are particle maps at
points with radii vectors 7 + nL, where 7 is an integer vector.

For the selected boundary conditions, the potential energy takes the following
form

VA, ™) = 2ici V(7)) + Zn Zic(|Fos — 72 + 1L|) (3.26)

In order to avoid calculating the infinite sum in (3.26), the following rule is
adopted [8]: distance |7;| between particles located at points with radius
vectors 7;, 7;, respectively, is defined as |7;| = min(|7_; + 7_; £ #iL|) over all 7.
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This rule means that a particle located in the basic cell interacts with each of the N-
1 particles in the basic cell or with its closest mappings (figure 2.1). It is important
to understand that the use of this rule leads to the “cutting off" of the potential at
distances

e > = (3.27)
2
This leads to a loss of the background contribution of distant particles,
therefore, in order to eliminate the effect of the finiteness of the system, the values
of L should be chosen large enough so that the forces acting at distances of large L2
are negligible. Note that a more correct catch is to take into account the interaction
of each particle with its display. References to original works devoted to this
approach and the description of computational algorithms that implement it are
given in [32].
We finally formulate the algorithm of the MD method:
— Set the number of particles of the system N;
— Set the initial configuration of the system (set of coordinates 7;(0) and speeds
7;(0) particles);
— Set h - integration step of the system of differential equations (3.7);
— Set Nh is the number of steps in which the solutions of the system of
differential equations (3.7) are calculated;
— Calculate in accordance with (3.20), (3.24) and taking into account the
periodic boundary conditions, the values of the coordinates 7; and speeds v;,
i1=0,1,...N at successive times t,,,i = 0,1, ... Nh.

3.3 Modeling a system consisting of a large number of particles using
the molecular dynamics method

The statistical system under consideration is deterministic, since the Cauchy
problem of a system of linear differential equations with constant coefficients is
solved to describe its behavior. At the same time, the obtained solutions directly
depend on the initial conditions 7;(0), 7;(0) (initial system configuration). Note that
their correct choice is far from a simple task (for example, it is not at all obvious in
advance how to choose the initial configuration so that the system under study
behaves like a fluid with a given temperature.), Therefore, we first discuss the
features of the evolution of a statistical system from arbitrary initial configurations.
One of the possible options for specifying the initial conditions is the placement of
particles in nodes of a certain rectangular grid (the size of which, obviously, must be
less than the size of the MD cell) and the assignment of their velocity vectors
randomly, for example, using a random number generator with a uniform
distribution law. This approach is used below in the problem of modeling a statistical
system using the MD method.
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To solve this problem, it is convenient to first create m-files containing

descriptions:

— A function that returns the initial system configuration;

— A function that returns the instantaneous acceleration of each particle of the
system and the instantaneous value of the potential energy;

— A function that returns the values of the coordinates, the components of the
velocity and acceleration along the corresponding coordinate axes;

— A function that returns a composite array containing the values of the
coordinates, the projections of the velocities and accelerations on the corresponding
coordinate axes in the nodes of the time grid.

3.5 Method of implementation of md modeling and calculation of
thermodynamic parameters

Configuration at t=0 Configuration at t= 0.05
af ; } ) ! ; ' 5 : . . ' ! !
Al 7
6 6
51 5
>ak >at
3 3
2 2
1 1t
0 0

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
X

Figure 3.2 — Initial configuration of the Figure 3.3 — Configuration of the
statistical system statistical system at time t = 0.05
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Configuration at t= 0.5 Configuration at t=1
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Figure 3.4 — Configuration of the Figure 3.5 — Configuration of the
statistical system at timet = 0.5 statistical system at time t = 1.0
- Number of particles within the left half of the box - Instantaneous kinetic energy per particle
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Figure 3.6 — Dependence of the number Figure 3.7 — Dependence of the
of particles in the left half of the box on Kinetic energy per particle on time
time (Nleft = Nleft (t)) (Ek = Ek (1))
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Figure 3.10 — Dependence of instantaneous pressure values on time

Analysis of dependencies presented in figure 3.6-3.10 shows that over time
the system tends to an equilibrium state (relaxation process), in which the number
of particles in the left and right halves of the MD cell and the total energy of the
system remain approximately the same. (Note that since the values of the initial
velocity are set using a random number generator, these dependencies obtained
during the document recalculation will always differ from the dependencies shown
in figure 3.6-3.10, but they should behave in a qualitative manner in a similar way).
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CONCLUSION

This paper provides basic information about the molecular dynamics method,;
it is shown that its use even for a two-dimensional system with a few particles makes
it possible to identify at a qualitative level a number of basic properties of statistical
systems, to introduce some concepts of Kinetic transport theory in liquids and gases.

MD is a fairly convenient and versatile method for conducting numerical
experiments with molecular systems of various nature. However, it should be borne
in mind that using the results of MD computations to refine the physical picture and
determine the dynamic parameters is not a simple matter. Let us briefly
list some main problems that arise here:

— The existing force fields are not universal and are intended only types of
molecular structures in a certain range of external conditions (temperature and
pressure);

— The results of the calculation of the trajectories depend on the numerical
procedure used to solve the system of Newton's equations. Especially it concerns the
choice of the thermostat type (as well as the barostat, if the calculations are
performed under the condition of constant pressure);

— The requirement of ergodicity (or quasi-ergodicity for large systems)
requires a special selection of suitable conditions for MD modeling.

The choice of these conditions largely depends on the surface topology of the
potential energy levels of the system under consideration. In connection with the
above, we note that the formal use of MD procedures most likely will not provide
valuable information about the physical properties of the system. Here it is very
important to compare the results of MD experiments carried out at different values
of parameters and to single out those parameters on which the dynamic properties
most significantly depend.

At the same time, physical intuition and understanding of the general physical
picture for the phenomena under consideration are of great importance. To obtain
quantitative results, it is required to simulate three-dimensional systems, which
inevitably leads to an increase in the counting time. The greatest time costs fall on
the formation of an equilibrium state and the calculation of forces and energy. To
reduce the time spent using different approaches.
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