

Institute of Automation and Information Technology Department "Robotics and Engineering Tools of Automation"

EDUCATIONAL PROGRAM 6B07113 Robotics and Mechatronics

Code and classification of the field of education:

6B07 Engineering, manufacturing and construction industries

Code and classification of training directions:

6B071 Engineering and engineering trades

Group of educational programs:

B063 Electrical engineering and automation

Level based on NQF: 6 Level based on IQF: 6 Study period: 4 year

Amount of credits: 240

Almaty 2022

Educational program <u>6B07113 Robotics and Mechatronics</u> was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Minutes #13 dated 28.04.2022

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council

Minutes #7 dated 26.04.2022

Educational program <u>6B07113 Robotics and Mechatronics</u> was developed by Academic committee based on direction 6B071 Engineering and engineering trades.

Full name	Academic degree/ academic title	Position	Workplace	Signature
Chairperson of A	Academic Committee	:		Λ
Baktybaev Murat Kyrgyzbaevich	Candidate of Physical and Mathematical Sciences	Associate Professor	Department of «Robotics and Engineering Tools of Automation», K.I. Satbayev KazNRTU	Jun-
Teaching staff:				
Ozhikenov Kassymbek Adılbekovich	Candidate of Technical Sciences	Professor, Head of the Department	Department of «Robotics and Engineering Tools of Automation», K.I. Satbayev KazNRTU	Har.
Employers:			1100	MedRemZavor
Dzhumagulov Arystanbek Kuyzembaevich	(=)	General Director	LLP Medre «MEDREMZAVOD HOLDING»	
Akzhanov Janat Koishibaevich	-	Director	LLP «SAIMAN Corporation»	Kos dpaule
Students			1/6/6	Holding Animary
Muratov Dias Muratovich	-	3rd year student	Department of «Robotives and Engineering Tools of Automation», K.I. Satbayev KazNRTU	18 m. 40m . m/91

Table of contents

List of abbreviations and designations

- 1. Description of educational program
- 2. Purpose and objectives of educational program
- 3. Requirements for the evaluation of educational program learning outcomes
- 4. Passport of educational program
- 4.1. General information
- 4.2. Relationship between the achievability of the formed learning outcomes according to educational program and academic disciplines
- 5. Curriculum of educational program
- 6. Additional educational programs (Minor)

List of abbreviations and designations

EP - Educational program

GEP - general education disciplines

BD - basic disciplines

PD - profile disciplines

MSHE RK - Ministry of Science and Higher Education of the Republic of Kazakhstan

SAC - state attestation commission

ECTS - European Credit Transfer and Accumulation System

GC – General cultural competences

GPC - General professional competencies

PC - Professional competence

EO - educational outcomes

FA – final attestation

1. Description of educational program

The professional activities of the graduates of the program are directed to the field of robotics and mechatronics.

Educational program «Robotics and mechatronics» is aimed at training professional bachelors in the field of design and construction of robots, robotic and mechatronic systems for industrial and non-industrial purposes.

The objects of professional activity of graduates who have completed the undergraduate program are robotic and mechatronic systems, including information and sensory, Executive and control units, their mathematical, algorithmic and software methods and tools for design, modeling, experimental studies, debugging and exploitation, research and production testing of robotic and mechatronic systems having different applications.

Educational program "Robotics and mechatronics" contains a complete list of academic disciplines, grouped in cycles: general education disciplines (GED), basic disciplines (BD) and profile disciplines (PD) as mandatory components, and components for selection, indicating the complexity of each subject in academic credits and hours established by the State obligatory standards of higher and postgraduate education, approved by order of MSHE RK No dated July 20, 2022.

The disciplines of the mandatory component of the GED cycle are aimed at forming the worldview, civic and moral positions of a future specialist who is competitive on the basis of knowledge of information and communication technologies, building communication programs in the state, Russian and foreign languages, focusing on a healthy lifestyle, self-improvement and professional success. The BD cycle includes studying academic subjects and passing professional practice. The PD cycle includes academic disciplines and types of professional practices. The programs of disciplines and modules of the BD and PD cycles are interdisciplinary and multidisciplinary in nature, providing training at the junction of a number of areas of knowledge.

Final certification is carried out in the form of writing and defending a thesis (project) or preparing and passing a comprehensive exam.

The requirements for the level of training of students are determined based on the Dublin descriptors of the first level of higher education (bachelor's degree) and reflect the development of competence, expressed as outcomes of learning. Learning outcomes are formed both at the level of the entire educational program of higher education, and at the level of individual modules or academic disciplines.

Description compulsory standard requirements for graduation and assignment of the academic degree bachelor: on the volume of the educational program of bachelor degree is 240 credits, regardless of the form of education, applied educational technologies, the implementation of bachelor programs using a network form of realization of the program of bachelor in the individual curriculum, including accelerated learning.

Special requirements for University graduation in this program: Students who have passed the final certification, and who have confirmed the assimilation of the professional curriculum in the EP "Robotics and mechatronics", the decision

of the SAC confers the academic degree "Bachelor of engineering and technology" in the educational programRobotics and mechatronics and a state-issued diploma with an Appendix is issued.

Issuance of a state-issued diploma with an Appendix is carried out on the basis of an order of the head of the University on graduation.

The diploma Supplement is filled out on the basis of a certificate of completion of the student's (student's) individual curriculum in accordance with the received grades in all disciplines in the amount provided for by the state mandatory standard of education and the working curriculum, completed course papers (projects), types of practices and the results of final certification.

In the diploma Supplement, the latest grades for each academic discipline are recorded according to the point-rating letter system of knowledge assessments, indicating its volume in credits and in the ECTS scale.

2. Purpose and objectives of educational program

Purpose of EP: The purpose of the educational program is to train highly qualified, competitive and in-demand specialists in the field of robotics and mechatronics in the labor market, capable of performing design, production, technical, organizational work in professional activities

Tasks of EP: As a result of the training bachelor of EP "Robotics and mechatronics" should receive all the necessary knowledge and skills for ensuring quality implementation of functional responsibilities in their chosen specialty, and to acquire socio-humanitarian, economic, administrative, scientific and technical competencies that serve as the Foundation for providing graduate mobility on the professional labor market and readiness to continue their education in higher or further education.

Competencies at the end of studing

GC 1 The ability to communicate in oral and written forms in the state, Russian and fore languages for solving problems of interpersonal and intercultural interaction GC 2 Understanding and practical use of the norms of a healthy lifestyle, including iss of prevention, the ability to use physical culture to optimize performance GC 3 The ability to analyze the main stages and patterns of the historical development society for the formation of civic position GC 4 Ability to use the foundations of philosophical knowledge to form a worldview GC 5 The ability to critically use the methods of modern science in practice GC 6 Awareness of the need and the acquisition of the ability to independently study improve their qualifications throughout their working life GC 7 Knowledge and understanding of professional ethical standards, mastery professional communication techniques GC 8 Ability to work in a team, tolerantly perceiving social, ethnic, confessional cultural differences GC 9 Ability to use the basics of economic knowledge in various fields of activity		Competencies at the end of studing
languages for solving problems of interpersonal and intercultural interaction GC 2 Understanding and practical use of the norms of a healthy lifestyle, including iss of prevention, the ability to use physical culture to optimize performance GC 3 The ability to analyze the main stages and patterns of the historical developmen society for the formation of civic position GC 4 Ability to use the foundations of philosophical knowledge to form a worldview GC 5 The ability to critically use the methods of modern science in practice GC 6 Awareness of the need and the acquisition of the ability to independently study improve their qualifications throughout their working life GC 7 Knowledge and understanding of professional ethical standards, mastery professional communication techniques GC 8 Ability to work in a team, tolerantly perceiving social, ethnic, confessional cultural differences GC 9 Ability to use the basics of economic knowledge in various fields of activity		Generalcultural competences (GC)
GC 2 Understanding and practical use of the norms of a healthy lifestyle, including iss of prevention, the ability to use physical culture to optimize performance GC 3 The ability to analyze the main stages and patterns of the historical development society for the formation of civic position GC 4 Ability to use the foundations of philosophical knowledge to form a worldview GC 5 The ability to critically use the methods of modern science in practice GC 6 Awareness of the need and the acquisition of the ability to independently study improve their qualifications throughout their working life GC 7 Knowledge and understanding of professional ethical standards, mastery professional communication techniques GC 8 Ability to work in a team, tolerantly perceiving social, ethnic, confessional cultural differences GC 9 Ability to use the basics of economic knowledge in various fields of activity	GC 1	The ability to communicate in oral and written forms in the state, Russian and foreign
of prevention, the ability to use physical culture to optimize performance GC 3 The ability to analyze the main stages and patterns of the historical developmen society for the formation of civic position GC 4 Ability to use the foundations of philosophical knowledge to form a worldview GC 5 The ability to critically use the methods of modern science in practice GC 6 Awareness of the need and the acquisition of the ability to independently study improve their qualifications throughout their working life GC 7 Knowledge and understanding of professional ethical standards, mastery professional communication techniques GC 8 Ability to work in a team, tolerantly perceiving social, ethnic, confessional cultural differences GC 9 Ability to use the basics of economic knowledge in various fields of activity		languages for solving problems of interpersonal and intercultural interaction
GC 3 The ability to analyze the main stages and patterns of the historical development society for the formation of civic position GC 4 Ability to use the foundations of philosophical knowledge to form a worldview GC 5 The ability to critically use the methods of modern science in practice GC 6 Awareness of the need and the acquisition of the ability to independently study improve their qualifications throughout their working life GC 7 Knowledge and understanding of professional ethical standards, mastery professional communication techniques GC 8 Ability to work in a team, tolerantly perceiving social, ethnic, confessional cultural differences GC 9 Ability to use the basics of economic knowledge in various fields of activity	GC 2	Understanding and practical use of the norms of a healthy lifestyle, including issues
society for the formation of civic position GC 4 Ability to use the foundations of philosophical knowledge to form a worldview GC 5 The ability to critically use the methods of modern science in practice GC 6 Awareness of the need and the acquisition of the ability to independently study improve their qualifications throughout their working life GC 7 Knowledge and understanding of professional ethical standards, mastery professional communication techniques GC 8 Ability to work in a team, tolerantly perceiving social, ethnic, confessional cultural differences GC 9 Ability to use the basics of economic knowledge in various fields of activity		of prevention, the ability to use physical culture to optimize performance
GC 4 Ability to use the foundations of philosophical knowledge to form a worldview GC 5 The ability to critically use the methods of modern science in practice GC 6 Awareness of the need and the acquisition of the ability to independently study improve their qualifications throughout their working life GC 7 Knowledge and understanding of professional ethical standards, mastery professional communication techniques GC 8 Ability to work in a team, tolerantly perceiving social, ethnic, confessional cultural differences GC 9 Ability to use the basics of economic knowledge in various fields of activity	GC 3	The ability to analyze the main stages and patterns of the historical development of
GC 5 The ability to critically use the methods of modern science in practice GC 6 Awareness of the need and the acquisition of the ability to independently study improve their qualifications throughout their working life GC 7 Knowledge and understanding of professional ethical standards, mastery professional communication techniques GC 8 Ability to work in a team, tolerantly perceiving social, ethnic, confessional cultural differences GC 9 Ability to use the basics of economic knowledge in various fields of activity		society for the formation of civic position
GC 6 Awareness of the need and the acquisition of the ability to independently study improve their qualifications throughout their working life GC 7 Knowledge and understanding of professional ethical standards, mastery professional communication techniques GC 8 Ability to work in a team, tolerantly perceiving social, ethnic, confessional cultural differences GC 9 Ability to use the basics of economic knowledge in various fields of activity		Ability to use the foundations of philosophical knowledge to form a worldview
improve their qualifications throughout their working life GC 7 Knowledge and understanding of professional ethical standards, mastery professional communication techniques GC 8 Ability to work in a team, tolerantly perceiving social, ethnic, confessional cultural differences GC 9 Ability to use the basics of economic knowledge in various fields of activity	GC 5	
GC 7 Knowledge and understanding of professional ethical standards, mastery professional communication techniques GC 8 Ability to work in a team, tolerantly perceiving social, ethnic, confessional cultural differences GC 9 Ability to use the basics of economic knowledge in various fields of activity	GC 6	Awareness of the need and the acquisition of the ability to independently study and
professional communication techniques GC 8 Ability to work in a team, tolerantly perceiving social, ethnic, confessional cultural differences GC 9 Ability to use the basics of economic knowledge in various fields of activity	_	improve their qualifications throughout their working life
GC 8 Ability to work in a team, tolerantly perceiving social, ethnic, confessional cultural differences GC 9 Ability to use the basics of economic knowledge in various fields of activity	GC 7	Knowledge and understanding of professional ethical standards, mastery of
cultural differences GC 9 Ability to use the basics of economic knowledge in various fields of activity		
GC 9 Ability to use the basics of economic knowledge in various fields of activity	GC 8	Ability to work in a team, tolerantly perceiving social, ethnic, confessional and
		cultural differences
Compared must again and accompation along (CDC)	GC 9	Ability to use the basics of economic knowledge in various fields of activity
General professional competencies (GPC)		General professional competencies (GPC)
GPC 1 Knowledge of design methods for robotic and mechatronic systems, their individ	GPC 1	Knowledge of design methods for robotic and mechatronic systems, their individual
subsystems and modules		subsystems and modules
GPC 2 Possession of modern software products for solving problems of system design	GPC 2	Possession of modern software products for solving problems of system design,
design of mechanical and mechatronic modules, control and information processing	_	design of mechanical and mechatronic modules, control and information processing
	GPC 3	Knowledge of mathematical models of robots, robotic and mechatronic systems, their
individual subsystems and modules, carrying out their research using mathemat		individual subsystems and modules, carrying out their research using mathematical
modeling, using both special and universal software tools, in order to substantiate		modeling, using both special and universal software tools, in order to substantiate the
theoretical and design decisions		
GPC 4 Understanding the physical processes and phenomena underlying the principles	GPC 4	Understanding the physical processes and phenomena underlying the principles of
operation of devices, equipment and systems		
	GPC 5	Knowledge of standards, methodological and regulatory materials accompanying the
		operation, installation and adjustment of modern mechatronic systems with digital
control		
Professional competence (PC)	ı	
PC-1 Collection and analysis of scientific and technical information, taking into acco		
	PC -1	
technology and technology in professional activities	PC -1	modern trends in the development and use of the achievements of science,

PC -2	Assessment of the economic efficiency of the implementation of projected robotic
_	and mechatronic systems, their individual modules and subsystems
PC -3	Application of modern software products and the latest technologies for solving and managing interdisciplinary engineering problems in various fields of science and technology
PC -4	Evaluation of the surrounding reality on the basis of worldview positions formed by knowledge of the foundations of philosophy, which provide scientific understanding and study of the natural and social world by methods of scientific and philosophical knowledge
PC -5	Calculation and design of individual blocks and devices of robotic and mechatronic systems, control, information-sensor and executive subsystems and mechatronic modules in accordance with the terms of reference
PC -6	Planning tests of modules and subsystems of robotic and mechatronic systems, participation in the organization and conduct of experiments at existing facilities and experimental models, processing the results of experimental studies using modern information technologies
PC -7	Monitoring the compliance of technical documentation of developed projects with standards and technological conditions
PC -8	Implementation of the results of theoretical developments in the production of robotic and mechatronic systems, their subsystems and individual modules
PC -9	Organization of work on operation, installation and commissioning of modern mechatronic systems
PC -10	Organization of the activities of the production team, making organizational and managerial decisions in the context of different opinions and assessing the consequences of decisions made

3. Requirements for evaluating the educational program learning outcomes

- **EO1** Demonstrate knowledge of the branches of higher mathematics, physics and other natural sciences and apply them to solve problems that have arisen in the course of professional activity.
- **EO2** Apply modern software products and the latest technologies to solve and manage interdisciplinary engineering problems in various fields of science and technology.
- **EO3** Research in the field of development of new samples and improvement of existing mechatronic and robotic systems, search for new ways of information management and processing.
- **EO4** Collect and analyze scientific and technical information, taking into account current trends in the development and use of achievements of science, technology and technology in professional activities.
- ${f EO5}$ To determine the safety, environmental friendliness and economic efficiency of the implementation of the projected robotic and mechatronic systems, their individual modules and subsystems.
- **EO6** Calculate and design individual blocks and devices of robotic and mechatronic systems, intelligent control, information-sensor and executive subsystems and mechatronic modules, in accordance with the terms of reference.
- **EO7** Plan tests of modules and subsystems of robotic and mechatronic systems, organize and conduct experiments on existing objects and experimental models, processing the results of experimental research, using modern information technologies.
- **EO8** To assess the compliance of the technical documentation of the developed projects with standards and technological conditions.
- **EO9** Organize the operation, installation and commissioning of modern mechatronic systems.
- **EO10** Organize the activities of the team, make organizational and managerial decisions in the context of different opinions and assess the consequences of the decisions taken.

4. Passport of educational program

4.1. General information

No	Field name	Comments
1		6B07 Manufacturing and processing industries
	of education	
2		6B071 Engineering and engineering trades
	directions	
3	Educational program group	B063 Electrical engineering and automation
	Educational program name	6B07113 Robotics and Mechatronics
		Educational program «Robotics and mechatronics» is
	program	aimed at training professional bachelors in the field of
		design and construction of robots, robotic and
		mechatronic systems for industrial and non-industrial
		purposes.
6	Purpose of EP	The purpose of the educational program is to train
		highly qualified, competitive and in-demand specialists
		in the field of robotics and mechatronics in the labor
		market, capable of performing design, production,
	The CER	technical, organizational work in professional activities
7	Type of EP	New
8	The level based on NQF	6
9	The level based on IQF	6
	Distinctive features of EP	-
	_	providing a wide range of theoretical and practical
	program	knowledge in the professional field; the ability to
		develop methodological and regulatory documents,
		technical documentation, as well as the implementation
		of measures to implement the developed projects and programs; the ability to make decisions based on the
		results of calculations for projects and the results of the
		technical-economic and functional-cost analysis of the
		effectiveness of the designed mechatronic systems;
		master the organization of work on operation,
		installation and adjustment of modern machines and
		equipment
12	Learning outcomes of educational	
	program	
13	Education form	full-time
	Period of training	4 year
	Amount of credits	240
16	Languages of instruction	russian, kazakh
	Academic degree awarded	«Bachelor of Engineering and Technology in the
		educational program «6B07113 Robotics and
		Mechatronics»
18	Developer(s) and authors	Ozhikenov K.A.,
	_	Tasbolatova L.T.

4.2. Relationship between the achievability of the formed learning outcomes based on educational program and academic disciplines

					Ge	nera	ted le	arnin	ıg out	tcom	es (c	odes)	,
№	Discipline name	Short description of discipline	Amount of credits	ЕО	1EO	2EO	3EO4	EO5	EO6	EO7	EO8	EO9	EO 10
		Cycle of general education disciplines						•					
		Component of choice											
11	Fundamentals of anti- corruption culture	The discipline studies the essence, causes, causes of sustainable development of corruption from both historical and modern points of view. Examines the prerequisites and impacts for the development of an anti-corruption culture. Studies the development of anti-corruption on the basis of social, economic, legal, cultural, moral and ethical norms. Studies the problems of the formation of an anti-corruption culture based on the relationship with various types of social relations and various manifestations.	5									v	v
2.	Fundamentals of Entrepreneurship and Leadership	The discipline studies the basics of entrepreneurship and leadership from the point of view of science and law; features, problematic aspects and prospects of development; theory and practice of entrepreneurship as a system of economic, organizational and legal relations of business structures; readiness of entrepreneurs for innovative receptivity. The discipline reveals the content of entrepreneurial activity, career stages, qualities, competencies and responsibilities of an entrepreneur, theoretical and practical business planning and economic expertise of business ideas, as well as risk analysis of innovative development, introduction of new technologies and technological solutions.	5									v	v
3.	Ecology and life safety	Purpose: formation of concepts and ideas about the inseparable unity of effective professional activity with the requirements of human safety and security and environmental protection. The issues of ecology, life safety in the conditions of labor activity are considered. In the course of problematic seminars, sources of pollution of atmospheric air, surface, groundwater, soil and ways to solve environmental problems are considered; life safety in the technosphere; natural and man-made emergencies. The discipline studies the tasks of ecology as a science, types (autecology, population and social ecology), ecological terms, laws of functioning of natural systems and aspects of environmental safety in working conditions. Environmental monitoring and management in The discipline studies the tasks of ecology as a science, types (autecology, population and social ecology), ecological terms, laws of functioning of natural systems and aspects of environmental safety in working conditions. Environmental monitoring and management in the field of its safety. Sources of pollution of atmospheric air, surface, groundwater, soil and ways to solve environmental problems; life safety in the technosphere; natural and man-made	5					v					

		emergencies.									
		Cycle of basic disciplines									
		University component									
4.	Engineering and computer graphics	The course develops the following skills in students: to depict all kinds of combinations of geometric shapes on a plane, to conduct research and their measurements, allowing for image transformations; create technical drawings, which are the main and reliable means of information, providing a link between the designer and the designer, technologist, builder, in AutoCAD.	5					v			
5.	Mathematics I	The course is based on the study of mathematical analysis in a volume that allows you to study elementary functions and solve the simplest geometric, physical and other applied problems. The main focus is on differential and integral calculus. The course sections include the differential calculus of functions of one variable, the derivative and differentials, the study of the behavior of functions, complex numbers, and polynomials. Indefinite integrals, their properties and methods of calculation. Certain integrals and their applications. Improper integrals.	5	v			v				
6.		The discipline is a continuation of Mathematics 1. The course sections include elements of linear algebra and analytical geometry. The main issues of linear algebra are considered: linear and self-adjoint operators, quadratic forms, linear programming. Differential calculus of a function of several variables and its applications. Multiple integrals. The theory of determinants and matrices, linear systems of equations, as well as elements of vector algebra. The elements of analytical geometry on the plane and in space are included.	5	v	v			v			
7.	Mathematics III	The discipline is an extension of Mathematics 2. The course sections include: theory of numerical series; theory of functional series; Fourier series; elements of probability theory and mathematical statistics. Special attention is paid to solving problems in all sections of series theory; finding the probability of events; calculating the numerical characteristics of random variables; using statistical methods for processing experimental data.	5	v					v		
8.	Physics I	The course studies the basic physical phenomena and laws of classical and modern physics; methods of physical research; the influence of physics as a science on the development of technology; the relationship of physics with other sciences and its role in solving scientific and technical problems of the specialty. The course covers the following sections: mechanics, dynamics of rotational motion of a solid body, mechanical harmonic waves, fundamentals of molecular kinetic theory and thermodynamics, transport phenomena, continuum mechanics, electrostatics, direct current, magnetic field, Maxwell's equations.	5	v		v					
9.	General chemistry	The purpose of the discipline is to study the basic concepts and laws of chemistry; fundamental laws of chemical thermodynamics and kinetics; quantum mechanical theory of atomic structure and chemical bonding. Solutions and their types, redox processes, coordination compounds: formation, stability and properties. The structure	4	v							

	of matter and the chemistry of elements.									
10Physics II	The course studies the laws of physics and their practical application in professional activity. Solving theoretical and experimental-practical educational problems of physics for the formation of the foundations in solving professional problems. Assessment of the degree of accuracy of the results of experimental or theoretical research methods, modeling of physical condition using a computer, study of modern measuring equipment, development of skills for conducting test studies and processing their results, distribution of the physical content of applied tasks of the future specialty.	5	v					v		
Fundamentals of 11 Electromechanics and electronics	Formation of students' knowledge of the basics of electromechanics and electronics, methods for designing and calculating electronic devices. Obtaining knowledge, skills and abilities to read structural and schematic diagrams of electronic devices, to understand the principles of their work and make the right choice of electronic components.	6	v							
12Electronics	The course is aimed at developing students' knowledge of the basics of electronics, methods of calculation and design of electronic devices. In the process of studying the course, the student will master the principles of the physical foundations of operation and devices of semiconductor devices, study their characteristics and indications, as well as the basic principles of constructing analog electronic circuits, signal generators, the principles of operation of integrated circuits, the functions and construction of integrated logic elements, and study methods for the synthesis of logic devices combination and chain types	5	v							
Integrated and microprocessor circuitry	The discipline is aimed at familiarizing students with the basics of digital integrated circuitry and their practical application in robotics, getting an idea of the development of integrated digital circuitry, architecture and programming of typical microprocessor systems, methods of automated modeling and design of electronic circuits.	5			v					
14Robot mechanics	The discipline studies the main types of mechanisms of robots and manipulators: articulated-lever, cam and gear mechanisms. The structural, kinematic and dynamic analysis and synthesis of various mechanisms of robots and manipulators, and their kinematic and dynamic properties are considered. Practical methods for solving problems of analysis and synthesis of mechanisms of robots and manipulators are studied.	5		v			v			
15Mechanics of manipulators	The purpose of the discipline is to study by students the features of designing and calculating manipulators of industrial robots and technological equipment, modern designs of robotic complexes, their location and structure, characteristics and requirements, conditions for the use of various manipulators in production. The main task of students is to acquire the necessary set of knowledge on modern production automation tools, be able to determine the optimal combination of the main technical and economic indicators, instill the necessary practical skills in the study, calculation and assembly of industrial robots and manipulators.	5				v	v			

Mechanics of controlled machines	The course is aimed at studying methods for controlling dynamic systems and estimating their state; mastering the methods of designing optimal control systems; application of the studied methods and algorithms for solving problems related to the control of mechatronic machines; study of various drive elements and structures in the overall system for constructing controlled mechatronic machines.	5		v		v		
17Basics of automation	The study of the general principles of building automation systems and automatic control, methods for selecting and calculating elements and automation systems. Acquaintance with the technical means of automatic systems and control systems, mastering the methods of practical calculation of the systems of automatic regulation and control, familiarity with the current state of technical means of automation.	5	v	v				
Fundamentals of information 18 and measurement technologies	The purpose of the discipline "Fundamentals of information and measurement technologies" is to study general information about the measurement of physical quantities, methods and means of measurement, measurement and information systems. The study of the main methods and means of measuring electrical, magnetic and non-electrical quantities, methods for evaluating the accuracy of measurement results, familiarization of students with modern measuring technologies and their application.	5	v					
Fundamentals of research methodology	The discipline "Fundamentals of research methodology" is aimed at studying the theory of methodology and methods of scientific and pedagogical research, the use of this knowledge in the specific research work of students. To acquaint students with the basic concepts of the general methodology of cognition of objective reality; to study the features of the subject of scientific research. When conducting training sessions on the discipline, the development of students' skills of teamwork, interpersonal communication is ensured.	5	v	v				
	Cycle of basic disciplines		•			•	•	
20Industrial Robotics	Component of choice The discipline is aimed at mastering disciplinary competencies in the use of information technology, technology, application software in the construction and diagnosis of industrial robots and robotic systems, including the use of modern methods for developing energy-efficient technologies and controls; to study the structure and arrangement of industrial robots, the basic principles of control implemented in robot drives, the principles of designing and assessing the state of industrial robots.	5		v	v			
21Service robotics	The discipline is aimed at familiarizing students with the history of development, purpose, general principles of operation of devices and the scope of application of service and other types of non-industrial mobile robots. To form an objective understanding of the relationship "man – machine" at the level of modern technology and the principles of its development in the future. They study the features of kinematics and dynamics of service and non-industrial mobile robots.	5		v	v			
Phytomorphic and anthropomorphic robotics	The course is aimed at the formation of basic knowledge about biomorphic and anthropomorphic robotic systems, their applications and design designs, as well as	5	v	v				

		I	1			1	- 1	- 1	- 1	- 1	 1	
	training in methods of calculating the parameters of manipulators, the acquisition by											
	students of the skills of calculating kinematic and dynamic variables of movement of											
	manipulation systems; knowledge about robotic devices of bionic and											
	anthropomorphic design designs.											
	In the process of studying the discipline "Autonomous mobile robots" a student forms											
23 Autonomous mobile robots	a knowledge base on the basics of organizing the design process, on the principles of	5					v	v				
	parallelization of design work, on how to achieve optimal technical and economic						`	•				
	parameters of the developed products of mobile robotic systems.											
	The discipline is aimed at studying the methods of programming microcontrollers and											
Programming for	acquiring skills in the practical application of microcontrollers in modern											
microcontrollers	information-measuring and control systems; formation of programming skills for	5		V				v				
inicrocontrollers	microcontrollers for solving various problems, using analog-to-digital and digital-to-											
	analog converters.											
	The discipline studies the basic principles of programming in high-level languages							T	T	T		
	and their application in solving applied problems. The study of the discipline should											
Programming in a high-level	contribute to the formation of the foundations of scientific thinking among students,	5										
language	including: understanding the principles of building complex systems using a high-	3		v								
	level programming language; the ability to evaluate the effectiveness of various											
	technologies and principles for solving applied problems.											
	The discipline is aimed at studying structural diagrams of microprocessor systems in											
Microprocessor control	mechatronics and robotics, the basics for developing hardware for microprocessor	4										
devices of robots	devices and controlling robots; acquisition of skills in building control devices for	4			v			V				
	various objects of mechatronic and robotic systems.											
	The discipline is aimed at studying the basic principles of building microprocessor											
N.C. 11 1	systems and modern architectures of microcontrollers; mastering methods and tools											
Microcontroller control	for the development of microcontroller systems for collecting and processing	4	v		v							
systems	information; acquisition of skills in managing various sensors and solving the											
	problem of microprocessor control.											
	Basic concepts of mechatronics and robotics, device robots, principles of design,											
	design and management of robotic systems, principles and methodological bases for											
	the construction of mechatronic devices, modules, systems, device and principle of	_										
28Robot management	operation of industrial robots, manipulators, tongs PR, individual modules PR,	6			V			v				
	classification of mechatronic modules, robots and manipulators, their main technical											
	characteristics.											
	The discipline is aimed at the formation of competencies necessary for the acquisition											
	of knowledge and skills of construction, as well as qualitative and quantitative											
29Control and dynamic systems	research of mathematical models of controlled complex dynamic systems operating in	6			v			v				
Systems	continuous or discrete time, as well as evaluation of raw materials and data for the	Ĭ			'			•				
	development of mathematical models of a real process or phenomenon.											
Statistical Methods in		_										
20		5						V	V			
Statistical Methods in Engineering Research	The discipline is aimed at studying the basic methods of modeling processes and systems in solving problems of processing and interpretation of experimental data and	5						v	v			

				1			1	-	ı	- 1	- 1	
		problems of system engineering and circuit design, the formation of logical and										
		algorithmic thinking of students, allowing the use of statistical methods in										
		engineering research.										
		The discipline is aimed at familiarizing students with the methods of engineering										
		creativity, shaping their knowledge, skills and abilities to use the methods of										
		searching for new technical solutions. The course will teach students how to	5	v		v	v					
31	creativity	formulate and solve inventive problems that arise in the process of design		'		•	*					
		development, as well as in the technical development of new products, their operation										
		and repair.										
		Cycle of profile disciplines										
		University component										
		The study of the material of this course allows you to get some knowledge of the										
		device power sources, skills using these devices as a tool in their professional										
32	Power sources	activities. Sources of primary power. Electromagnetic elements of power devices.	4	v								
		Transformers. Smoothing filters. Switching power supplies. Control of the regulating										
		element in the switching power supplies. AC-DC converters.										
		The discipline is aimed at developing the student's theoretical and practical base for										
		carrying out heat engineering calculations of heat and power equipment and assessing										
	Engineering thermodynamics	its thermodynamic efficiency. The course studies the basic laws and fundamental	E									
33	and electrodynamics	principles of technical thermodynamics, the properties and processes of changing the	5	v		V						
	•	states of working bodies, the principles of energy conversion in heat and refrigeration										
		machines, thermodynamic cycles.										
		The discipline aims to give students an idea of modern technologies for building										
		embedded control systems, theoretical and practical aspects of the development of										
	Embedded systems in	microcontroller systems and to promote the development of system thinking. The										
34	robotics	course covers the main issues of building embedded systems for controlling robots	6									
		based on microcontrollers, focusing on a promising high-performance and energy-										
		efficient family of microcontrollers.										
		The discipline is aimed at studying typical mathematical schemes for modeling										
2.5	Programming for engineers	systems, familiarizing with the main approaches to simulating systems, studying	4									
33	with MATLAB	modern methods of simulating physical control processes in devices, in technical	4		V							
		means of automation and technological processes in the MATLAB environment.										
		Cycle of profile disciplines										
		Component of choice										
		The discipline is aimed at preparing students for solving practical problems of										
	Measuring instrument	assessing the accuracy of measuring instruments. As a result of studying the										
	accuracy	discipline, the student knows the definition of accuracy, the causes and types of errors	5							v	v	
	accuracy	in the functioning of devices, methods for assessing various types of errors and their										
		influence on the resulting accuracy of the functioning of devices.										
37	Control and measuring	The discipline "Hydropneumoprivod" studies the following main issues: the principle	5	v		v						
57	Instrumentation	of operation; classification; basic parameters of volumetric and paddle hydraulic	v			•						

		1						
	machines; examples of designs; features of working processes, designs and calculation methods of hydraulic machines; the principle of operation of volumetric and hydrodynamic gears. The knowledge gained by students while studying the materials of the theoretical and laboratory part of the discipline is used in the study of subsequent disciplines and final qualifying work.							
38Sensor systems in robotics	The discipline is aimed at acquiring students' knowledge about sensors designed for robotic and mechatronic systems and complexes, such as load cells, flex sensors, infrared and optical sensors, and others. In this course, the student will learn how to program and receive, process data from these sensors.	5	v			v		
39Touch electronics, sensors	The discipline is aimed at acquiring students' knowledge about the principles of operation, basic parameters, designs of sensors, measuring transducers based on them and sensors for various purposes. Studies the basics of physical phenomena and processes underlying the principles of sensors and measuring transducers.	5	v			v		
40Robot drives	The discipline is aimed at studying the main and modern types of drives used in industrial and domestic robots, functional diagrams included in its composition, drives of robots and elements, static and dynamic characteristics; ways to improve the dynamics with the help of corrective feedbacks; microprocessor control devices for robot drives.	6			v	v		
Hydropneumatic drives of robots	The discipline "Hydropneumoprivod" studies the following main issues: the principle of operation; classification; basic parameters of volumetric and paddle hydraulic machines; examples of designs; features of working processes, designs and calculation methods of hydraulic machines; the principle of operation of volumetric and hydrodynamic gears. The knowledge gained by students while studying the materials of the theoretical and laboratory part of the discipline is used in the study of subsequent disciplines and final qualifying work.	6	v			v		
Simulation of dynamic systems	The discipline is aimed at studying the principles of building simulation modeling of dynamic systems on MATLAB / SIMULINK and analyzing the flow of dynamic processes in robot drives and evaluating the indicators of the positioning process, as well as simulation methods for building control systems for mechatronic and robotic systems.	5						
Modeling of measuring systems	The discipline is aimed at studying the model of information and signal transformation in measuring systems, studying the main characteristics of measuring instruments and methods for their calculation and forecasting; study of the principles of construction of measuring instruments and systems; mastering the technology of computer simulation in the study, design of measuring systems.	5		v		v		
Machine Learning Theory and Neural Networks	This discipline includes the study of the foundations of Machine learning and neural networks and their practical applications. There will be considered types of neural networks, methods and algorithms used in machine learning and neural networks.	5				v		
Fuzzy logic and neural networks	The discipline includes the study of the basics of fuzzy logic and neural networks and their practical application in modern technology. Methods and algorithms used in fuzzy logic and neural networks for solving problems of optimal control of robotic	5		v		v		

		and mechatronic systems and complexes under uncertainty will be considered.								
46	Electronic circuit design	The discipline is aimed at studying the principles of organization and methods of designing electronic circuits, including methods of computer-aided design, construction of mathematical models and software tools, i.e. what allows modern specialists to set and solve complex problems of designing devices and complexes of electronic equipment.	5				v			
47	Capstone research project 1	The course will allow students to learn how to transform an idea into a concrete solution and determine the most optimal approach to its implementation. The course participants will gain a holistic understanding of the process, key techniques and tools necessary for the design, development and further development of their products and services. As a result, students will get acquainted with the methods of rapid design of prototype solutions, learn how to plan the stages of work on the product and evaluate their labor intensity, will be able to find non-standard solutions to take into account the specific conditions of the tasks performed and develop innovative solutions.	5		v	v	v			
48	Robot design	The discipline covers the issues of robot design from the point of view of creating robotic systems and complexes, including mechanical and electronic systems. The discipline provides in-depth knowledge about the main stages of creating a robotic device and complexes.	5				v			
49	Capstone research project 2	The Capstone Research Project 2 course is a continuation of the Capstone Research Project 1 course. The course "Capstone research project 2" is an independently completed development related to the solution of theoretical issues and experimental research or to the solution of applied problems that are part of the research work carried out by the department or enterprise.	5				v	v		

5. Curriculum of educational program

KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY NAMED AFTER K.I. SATBAYEV

APPROVED

			Management Board- ied after K.Satpayev
_			M.M. Begentaev
	«	>>	2022 y.

CURRICULUM

of Educational Program on enrollment for 2022-2023 academic year
Educational program 6B07113 - "Robotics and mechatronics"
Group of educational programs B063 - "Electrical engineering and automation"

Form of study: full-time Duration of study: 4 years Academic degree: Bachelor of Engineering and Technology Total SIS Allocation of face-to-face training based on courses and semesters Classroom amount Total (including Form of I course II course III course IV course Discipline code Name of disciplines Cycle amount in hours TSIS) in control lec/lab/pr credits hours semester semester semester semester semester semester semester M-1. Module of language training LNG 108 GED, RC 300 English language 10 0/0/6 LNG 104 Kazakh (Russian) language GED, RC 10 300 0/0/6 210 Е 5 M-2. Module of physical training 240 KFK 101-104 Physical Culture GED. RC 8 0/0/8 120 Difcredit M-3. Module of information technology Information and communication CSE 677 GED, RC 5 150 2/1/0 105 Е 5 technologies (in English) Engineering and computer BD, UC 5 150 1/0/2 105 Э 5 GEN 429 graphics M-4. Module of socio-cultural development HUM 100 Modern History of Kazakhstan GED, RC 5 150 1/0/2 105 SE HUM 132 GED, RC 5 150 1/0/2 105 Philosophy Socio-political knowledge module HUM 120 3 90 1/0/1 60 Е 3 (sociology, politology) GED, RC Socio-political knowledge module HUM 134 5 150 2/0/1 150 5 (culturology, psychology) M-5. Module of anti-corruption culture, ecology and life safety base Fundamentals of anti-corruption **HUM 133** Fundamentals of Entrepreneurship GED, CCH 5 150 2/0/1 150 Е 5 MNG 488 and Leadership CHE 656 Ecology and life safety M-6. Module of physical and mathematical training MAT 101 Mathematics I BD, UC 150 1/0/2 105 5 MAT 102 Mathematics II BD, UC 150 1/0/2 105 5 MAT 103 150 Математика III BD. UC 1/0/2Э M-7. Module of physical and chemical preparation PHY 111 Physics I BD, UC 1/1/1 105

CHE846 PHY 112	General chemistry Physics II	BD, UC BD, UC	4 5	120 150	1/1/1 1/1/1	75 105	E E	4	5		1	1	+	-	+
PH I 112	Filysics II	BD, UC	3	130		Robotics Modu			3	l .					—
2201	Elective	BD, EC	5	150	N1-0. I	105	E			5				1	\top
2202	Elective	BD, EC	5	150		105	E			3	5				+
2202	Elective	BD, EC	3		l Electronics an	d Circuit Engi		ule			3				
ROB538	Fundamentals of	BD, UC	6	180	2/1/1	120	E	uic		6					T
ROB154	Electronics and electronics Electronics	BD, UC	5	150	1/1/1	105	Е				5				\pm
ROB573	Integrated and microprocessor circuitry	BD, UC	5	150	2/1/0	105	E					5			
	· · · · · · · · · · · · · · · · · · ·				M-10. Rob	ot Mechanics I	Module	1			•		•		
ROB503	Robot mechanics	BD, UC	5	150	2/0/1	105	E				5				
ROB173	Mechanics of manipulators	BD, UC	5	150	2/0/1	105	E					5			
ROB534	Mechanics of controlled machines	BD, UC	5	150	2/0/1	105	E						5		
					M-11. Robot	Control Syster	n Module								
ROB515	Basics of automation	BD, UC	5	150	2/1/0	105	E					5			
3203	Elective	BD, EC	5	150		105	E					5			
3204	Elective	BD, EC	4	120	1/1/1	75	E						4		
3206	Elective	BD, EC	6	180	1/1/2	120	E							6	
				M-12	2. Measureme	nt and power s	supply modu	le							
ROB187	Fundamentals of information and measurement technologies	BD, UC	5	150	2/1/0	105	Е					5			
ROB574	Power sources	PD, UC	4	120	1/1/1	75	E						4		
4302	Elective	PD, EC	5	150		105	Е							5	
	<u> </u>	•	•	•	M-13. Mod	ule of robotic	systems	•	•	•	•	•		•	
ROB535	Engineering thermodynamics and electrodynamics	PD, UC	5	150	2/0/1	105	Е						5		
ROB552	Embedded systems in robotics	PD, UC	6	180	1/1/2	120	Е							6	+
4301	Elective	PD, EC	5	150		105	Е							5	
4303	Elective	PD, EC	6	180		120	Е							6	
	·				M-14.N	Modeling mod	ule					-	-		
ROB550	Programming for engineers with MATLAB	PD, UC	4	120	1/1/1	75	Е						4		
4305	Elective	PD, EC	5	150		105	Е								
4306	Elective	PD, EC	5	150		105	Е								
					M-15	5. R&D module	e								
ROB527	Fundamentals of research methodology	BD, UC	5	150	2/0/1	105	Е					5			
3205	Elective	BD, EC	5	150		105	Е						5		
4304	Elective	PD, EC	5	150		105	Е							5	1
4307	Elective	PD, EC	5	150		105	Е								
					M-16. Prac	ctice-oriented 1	nodule								
AAP179	Educational practice	BD, UC	2						2						
AAP174	Industrial practice I	PD, UC	2								2				
AAP193	Industrial practice II	PD, UC	3										3		
					M-17. Modu	le of final cert	ification								
ECA003	Preparation and writing of a thesis (project)	FC	6												
ECA103	Defense of the thesis (project)	FC	6												
				M-1	18. Module of	additional typ	es of training	3							
AAP500	Military affairs	ATT	0												
	•							31	29	31	29	30	30	33	$\overline{}$

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I.SATPAYEV

ΑI	PPROVED	
Di	rector of the	Institute of Automation and
[n	formation T	echnology
		R.K. Uskenbayeva
(»	2022 v.

ELECTIVE DISCIPLINES for 2022-2023 academic year entrolment Educational program 6B07113 - Robotics and mechatronics

Group of educational programs B063 - Electrical engineering and automation

Full-time study Study duration: 4 years Academic degree: bachelor of engineering and technology

	Full-time	e study	Study duration: 4 years Academic degr	ee: bache	cioi oi ei	ngmeering	g and te	chhology	
Year of study	Elective code according to the curriculum	Discipline code	Name of disciplines	Term	Cycle	Credits	Total hours	lek/lab/pr	SRS (including SRSP) in hours
			Robotics Module						
	2201	ROB185	Industrial Robotics	3	BD. EC	5	150	2/0/1	105
	2201	ROB553	Service robotics	3	BD, EC	3	130	2/0/1	103
	2202	ROB523	Phytomorphic and anthropomorphic robotics	4	BD. EC	5	150	2/0/1	105
	2202	ROB511	Autonomous mobile robots	4	BD, EC	3	130	2/0/1	103
			Robot Control System Module						
	3203	ROB546	Programming for microcontrollers	5	BD. EC	5	150	1/1/1 2/1/0	105
	3203	ROB504	Programming in a high-level language	3	BD, EC	3	130		103
	3204	ROB544	Microprocessor control devices of robots	6	BD. EC	4	120	1/1/1	75
	3204	ROB545	Microcontroller control systems	Ü	BD, EC		120	1/1/1	13
	3206	ROB570	Robot management	7	BD, EC	6	180	1/1/2 1/1/2	120
	3200	ROB571	Control and dynamic systems	/					120
			Measurement and power supply module						
	4302	CSE577	Measuring instrument accuracy	7	PD, EC	5	150	2/1/0	105
	4302	ROB189	Control and measuring Instrumentation		ID, EC			2/1/0	103
			Robotic systems module						
	4301	ROB139	Sensor systems in robotics	7	PD, EC	5	150	2/1/0 2/1/0	105
	4501	ROB138	Touch electronics, sensors	,			150		
	4303	ROB548	Robot drives	7	PD, EC	6	180	1/1/2	120
	4505	ROB549	Hydropneumatic drives of robots	,			100	1/1/2	120
			Simulation module						
	4305	ROB551	Simulation of dynamic systems	- 8	PD. EC	5	150	1/1/1	105
	4303	ROB168	Modeling of measuring systems	0	TD, EC	3	130	2/1/0	103
	4306	ROB144	Machine Learning Theory and Neural Networks	Q	8 PD, EC	D, EC 5	150	2/1/0	105
	4500	ROB126	Fuzzy logic and neural networks	0			130	2/1/0	103
			R&D module						
	3205	ROB141	Statistical Methods in Engineering Research	6	BD. EC	5	150	2/0/1	105
	3203	ROB153	Fundamentals of engineering creativity	Ü	DD, LC	,	150	2/0/1	105
	4304	ROB109	Electronic circuit design	7	PD, EC	EC 5	150	2/1/0	105
	4304	ROB540	Capstone research project 1	,	10, EC	,	130	0/0/3	103
	4307	ROB166	Robot design	- 8	PD, EC	5	150	2/1/0	105
	4307	ROB541	Capstone research project 2	0	PD, EC	3	130	0/0/3	103

Number of credits in elective disciplines for the entire period of study						
Cycles of disciplines	Credits					
Cycle of basic disciplines (BD)	30					
Cycle of major disciplines (PD)	36					
TOTAL ·	66					

	Number of credits for the entire study period						
		Credits					
Cycle code	Cycles od disciplines	Mandatory component (MK)	University component (UC)	Component of choice (CC)	Total		
GED	Cycle of general education disciplines	51		5	56		
BD	Cycle of basic disciplines		82	30	112		
PD	Cycle of profile disciplines		24	36	60		
	Total for theoretical training:	51	106	71	228		
FA	Final attestation	12			12		
	IN TOTAL:	63	106	71	240		

Remark:

- 1. The names and amount of modules related to Module of basic training and professional activity are prescribed by departments themselves

 2. * Division into types of work is at the department's discretion

 3. If necessary, the disciplines: Physics II, Mathematics III, General Chemistry of the department include, at the expense of credits, the department's component of BD, UC from the basic training module

 4. The full academic load of one academic year should be 60 academic credits
- 5. The application of elective disciplines catalog in the same way as Curriculum is divided into modules, with the inclusion of "R&D" module

Decision of the Academic Council of Kazntu named after K.Satpayev. Protocol №or ""20y.	
Decision of the Educational and Methodological Council of Kazntu named after K.Satpayev. Protocol №or ""20y.	
Decision of the Academic Council of the Institute of A&IT. Protocol № or ""20y.	
Vice-Rector for Academic Affairs	 B.A. Zhautikov
Director of the Institute of Automation and Information Technology	 R.K. Uskenbayeva
Head of the Department of Robotics and Automation Equipment	 K.A. Ozhikenov
Specialty Council representative from employers	 A.K. Dzhumagulov

6. Additional educational programs (Minor)

Name of additional educational programs (Minor) with disciplines	Total number of credits	Recommended semesters of study	Documents on the results of mastering the additional educational programs (Minor)
Integrated and microprocessor circuitry	5	5	
Fundamentals of information and measuring technologies	5	5	an additional specialty Minor is assigned with the issuance of an Appendix
Theory of mechanisms and machines	5	5	to the diploma of the established sample
Fundamentals of automation	5	5	