

Institute	Energy and Mechanical engineering
Department	Mechanical engineering

EDUCATIONAL PROGRAM

6B07220 - Machines and technologies for processing new materials the name of educational program

Code and name field of education:

6B07-Engineering, manufacturing and civil engineering

Code and classification direction of personnel training:

6B072- Manufacturing and processing

Group of educational programs:

B069 Production of materials (glass, paper, plastic, tree)

EP purpose: 6 EP type: 6

Period of study: 4 years Volume of the credits: 240

Almaty 2022

Educational program 6B07220 - Machines and technologies for (the name of educational program)

processing new materials was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Minutes 13 dated «28 » 04 2022.

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council Minutes 7 dated «26 » 04 2022.

Educational program <u>6B07220 - Machines and technologies for</u> (the name of educational program)

<u>processing new materials</u> code and name of the educational program developed by the academic committee in the direction «6B072-Manufacturing and processing»

Full name	Academic degree/ academic title	Position	Workplace	Signature
Chairperson of Aca	demic Committee:			
Nugman E.Z.	Doctor PhD	Head of the Department of "Mechanical Engineering"	NAO KazNRTU named after K.I. Satpayev, Institute of Energy and Mechanical Engineering	14 f
Teaching staff:		ħ.		All .
Kerimzhanova M.F.	Candidate of Technical Sciences, Associate Professor	Professor	Department of Mechanical Engineering	A. Freges
Issametova M.E.	Candidate of Technical Sciences	Assoc. Professor	Department of Mechanical Engineering	all
Smailova G.A.	Candidate of Technical Sciences	Assoc. Professor	Department of Mechanical Engineering	J. Cong
Employers:				
Dyusembayev I.M.		Chief Engineer	Almaty plant "Electroshield"	deces -
Students			4	1
Rashidov R.R.	est vi	4th year student	Department of "Mechanical Engineering"	Park

List of abbreviations and designate

ECTS European Credit Transfer and Accumulation System

BD Basic disciplines

HEI higher education institution

SOSE State obligatory standard of education

KazNTU Kazakh national research Technical University named after K.I.

Satpaeva

MOP Modular educational program

NSC Non-profit joint stock company

GED General education disciplines

ED Educational program

MD Major disciplines

WC Working Curriculum

SIW Student's independent work

EMC Educational and Methodological Council

AC Academic Council

1 Description of educational program

EP 6B07220 - "Machines and technologies for processing new materials" is focused on the result of training, which forms professional competencies in accordance with the requirements of the labor market.

The objects of professional activity of the bachelor according to EP 6B07220 are machine-building plants, repair and mechanical bases of power systems, metallurgical enterprises, transport and automobile facilities, mining and processing industries, research organizations, design and technology organizations, design organizations, marketing and transport and operational services, service stations.

Bachelor in EP 6B07220 - "Machines and processing of new materials" can perform the following professional activities:

- 1. Design and technological development, implementation and operation of systemic, resource-saving technologies; development and implementation of technological processes for processing and assembling products; automation of machine-building production; creation of continuous flow production processes, automated complexes, flexible automated production; introduction of highly efficient means of technological equipment, ensuring the environmental friendliness of machine-building production.
- 2. Organizational and managerial: organization of the production process, organization of the work of performers; setting a goal and forming a management task related to the implementation of professional functions; organization of production service; management of the production process, taking into account technical, financial and human factors; development of control algorithms; accounting and reporting planning, development of a business plan for an enterprise, planning to improve production efficiency;
- 3. Experimental research: the use of modern experimental methods for the study of processes occurring in machine-building production; research of new directions in the technology of modern mechanical engineering; study of types of processing in mechanical engineering; research of objects of automation in the field of mechanical engineering; scientific substantiation of methods for ensuring the quality of manufactured products and increasing labor productivity;
- 4. Design and engineering: development of advanced designs; optimization of design solutions, taking into account environmental and energy-saving technologies; examination of design and technological developments; development of draft, technical and working designs of complex products using computer-aided design tools and best practices in the development of competitive products; carrying out technical calculations for projects, technical, economic and functional cost analysis of the effectiveness of designed products and structures; assessment of innovative potentials of projects; assessment of innovative risks of commercialization of projects.

Based on the theoretical and practical knowledge gained, the bachelor of technical sciences in the educational program forms professional competencies and must:

have an idea:

- about scientific, philosophical and religious pictures of the universe; about the essence, purpose and meaning of human life; variety of forms of human knowledge; spiritual values in creative and everyday life;
- about the processes and phenomena occurring in animate and inanimate nature; the possibilities of modern scientific methods of cognition of nature for solving natural science and professional problems;
- about the essence and social significance of his future profession, the importance of the disciplines that determine the specific area of his activity, their relationship in an integral system of knowledge;
- about the role of science in the development of civilization, the relationship between science and technology and related modern social and ethical problems, the value of scientific rationality;
- about the main directions, trends, problems and achievements in the field of pressure treatment of materials of different nature;
- about the features of plastic deformation and shaping of materials on a metal and non-metal base;
 - about progressive technologies of processing materials by pressure;
 - about the problems of environmental protection, ecology and life safety; *know:*
- theoretical bases of initiation of plastic deformation, influence, influence of thermomechanical and structural factors on technological and operational properties of products and semi-finished products (material products);
- on the relationship between the composition of raw materials, technological stages and technical and economic indicators of processes;
- methods for predicting, calculating and evaluating plastic and strength properties in the development of rational modes of shaping and deformation;
- basic principles of modeling of technological processes under different schemes of stress state and loading stiffness;
- methods for calculating the parameters of technological processes and the main characteristics of technological operations of the OMD;
- the main methods of building a CAD for the processing of materials and the choice of control parameters of the technological cycle for obtaining highquality products.
 - fundamentals of economic theory, industry economics;
- issues of labor protection and safety, environmental legislation; be able to:
 - use normative and legal documents related to professional activity;
- to conduct a conversation-dialogue in the state and foreign languages, using the rules of speech etiquette, to read literature in the specialty without a dictionary in order to search for information, to translate texts with a dictionary, to make annotations, abstracts and business letters in a foreign language;
- analyze the possibilities of shaping and plastic deformation of materials of different nature when changing the temperature-velocity, deformation-geometric and structural-phase parameters of the impact;

- formulate technical and economic requirements for the organization and management of technological processes for processing materials by pressure;
- assess the quality of products, identify and eliminate the causes of defects, develop measures to prevent them;
- analyze the production and economic activities of your unit and / or the entire enterprise, including using modern software products;
 - exercise control over technological and labor disciplines;
- use information technology to collect information and application software packages in solving design and production problems.

have skills:

- knowledge of the state language and the language of interethnic communication; lexical and grammatical minimum of one of the foreign languages;
- on the basics of industrial relations and management principles, taking into account technical, financial, psychological and human factors;
- work with software products, modern information technologies for searching, collecting, processing, analyzing and storing scientific and technical information;
- possession of special and scientific terminology in the field of processing materials by pressure;
- design and production of equipment and tools for OMD operations, organization of workshops for the processing of materials;
- selection of the necessary equipment, compilation of technological (route) maps, calculation of technical and economic indicators of production efficiency and reduction of wasteful costs;
- mathematical modeling of MMD processes and rationalization of the modes of preliminary preparation of materials, methods of their thermal and deformation processing.

be competent:

- in matters of technological and environmental safety, protection of human life, legal norms, international standards, technical means and methods of information technology used abroad.

The graduate of the educational program must:

- 1. Possess broad fundamental knowledge, be proactive, have the ability to adapt to changing requirements of the labor market and technology, be able to work in a team (general educational competencies);
- 2. Know the ethical and legal norms that regulate the relationship of a person to a person, society, the environment, be able to take them into account when developing environmental and social projects (socio-ethical competencies);
- 3. Be able to master the commercial, financial, administrative functions of management; skills of situational analysis, market analysis, economic methods of management (commercial calculation, financial policy formation, program-target methods of organization management), methods of modeling economic processes, evaluation of economic projects, a professional approach to studying the main problems in the field of economic and production management (economic and organizational and managerial competencies);

4. To be able to build and use models to describe and predict various phenomena, to carry out their qualitative and quantitative analysis (professional competencies);

2 The purpose and objectives of additional educational program

EP purpose:

Training of highly qualified and competitive specialists for the successful solution of scientific and engineering problems, capable of designing and implementing advanced technological processes of materials processing by pressure.

EP tasks:

- formation of knowledge of modern information technologies;
- acquisition of theoretical and practical knowledge of computer design of blank production products;
- possession of methods and methods of mathematical and 3D modeling;
- acquisition of professional competencies in accordance with the requirements of industry professional standards;
- acquisition of knowledge of the basics of technological processes of stamping, forging, rolling and design of technological processes for obtaining blanks;
- acquisition of knowledge of new materials, nanomaterials, nanopowders and technologies for their production;
- formation of knowledge about the main trends in the development of technologies for processing new materials, the introduction of innovative digital technologies.

3 Requirements for evaluating the learning outcomes of an educational program

Description of mandatory standard requirements for graduating from a university and conferring an academic bachelor's degree: mastering at least 240 academic credits of theoretical training and final thesis

4 Passport of the educational program

4.1 General information

$N_{\underline{0}}$	Field name	Note										
1	Code and name field of education	6B07- Engineering, manufacturing and civil										
		engineering										
2	Code and classification direction of	6B072 - Manufacturing and processing										
	personnel training											
3	Group of educational programs	6B069- Production of materials (glass, paper,										
		plastic, tree)										
4	Name of the educational program	6B07220 Machines and technologies for										
		processing new materials										
5	Short description of the educational	The educational program "Machines and										
	program	technologies for processing new materials" lays the										
		foundations of technology for processing materials by										
		pressure and procurement, students will learn in-										

	depth knowledge of special courses for processing
6 EP purpose	composite and polymer materials (additive technologies, CAD/CAM/CAE/PLM/PDM) modeling skills and research of various processing processes They will acquire skills in designing production and industrial systems, creating machines for pressure treatment, and operating modern equipment., controlled by computers, including additive technologies. Primary attention is paid to the skills of developing technological routes for manufacturing parts and designing technological operations, developing and implementing control programs, developing and using structural documentation for designing processes for the preparation of parts. Training of highly qualified and competitive
	specialists for the successful solution of scientific
	and engineering problems, capable of designing
	and implementing advanced technological
	processes of materials processing by pressure.
7 EP type	New EP
8 Level on NQF	6
9 Level on SQF	No
10EP distinctive features	
11 List of competencies of the educational program:	- Ability to apply general engineering knowledge, methods of mathematical analysis
12Learning outcomes of the educational	and modeling in professional activities; - Ability to analyze and evaluate production and technological processes; - Willingness to use modern information technologies in modeling technological processes, processing materials by pressure; - Willingness to apply advanced methods for calculating die equipment and tools in blank production; - Willingness to apply new materials, technologies for their production, additive technologies. ON1 Applies basic knowledge of fundamental
	disciplines of mathematics, physics, chemistry,
program:	digital technologies in production processes of materials processing by pressure. ON2 Demonstrates commitment to ethical values, has socio-cultural and business communication skills, is able to independently find the right solutions in non-standard situations; applies knowledge of economic laws, life safety, ecology; culture of academic integrity. ON3 Substantiates the application of advanced methods of computer-aided design and construction in the production processes of forging and stamping production. ON4 Searches, analyzes and evaluates information necessary for setting and solving professional tasks using information technologies in the field of

	procurement ON5 Evaluates additive technologies as a promising direction for improving the technology of processing composite materials, restoring machine components and parts. ON6 Develops design and technological documentation on the use, operation, maintenance of technological equipment, tooling and tools, in the production of blanks and finished parts. ON7 Participates in the design of forging, stamping, pressing equipment, tooling and tools in accordance with technical specifications using computer-aided design software. ON8 Applies progressive methods of research on the patterns of changes in the deformation properties of various materials, the influence of various technological factors on the quality of products. ON9 Applies promising methods, methods and means of obtaining, storing, processing information to solve communication problems; modern information technologies. ON10 Demonstrates readiness to use effective methods and methods of automation of technological processes of pressure treatment; advanced software for solving engineering and technological problems in the field of pressure treatment of materials.
13Form of training	daytime
14Period of study	4 years
15 Volume of the credits	240
16Language of education	russian, kazakh
17 The awarded academic degree	Bachelor of Engineering and Technology
18Developer(s) and authors:	The EP was developed by the academic committee in the direction "6B072-Production and manufacturing industries"

4.2. The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines

No	Name of	Short description of discipline	Num		Tł	ne forn	ned ed	ucatio	nal ou	tcome	s (cod	es)	
	discipline		ber	ON1	ON 2	ON 3	ON 4	ON 5	ON 6	ON 7	ON 8	ON 9	ON10
	•		of										
			credi										
			ts										
	<u> </u>	Cycle of general ed	•10	on dis	cipline	es	l .	l .			l .	l .	
		Required											
1	English language	English is a compulsary subject. According to the results of placement test or IELTS score, students are placed into groups and disciplines. The name of the discipline corresponds to the level of English.	10	V									
		When passing from level to level, prerequisites and postrequisites are respected.											
2	Kazakh (Russian) language	In this course author considers socio-political, socio-cultural spheres of communication and functional styles of the modern kazakh (russian) language. The course covers the specifics of the scientific style to develop and activate professional communication skills and abilities of students Also it allows students to leavn the basics of scientific style practically and develop the ability of production structural and semantic text analysis.		V									
3	Modern history of Kazakhstan	The course studies historical events, phenomena, facts processes that took place on the territory of Kazakhstan from ancient times to the present day. The discipline sections include: introduction to the history of Kazakhstan; the steppe empire of the Turks; early feudal states on the territory of Kazakhstan; Kazakhstan during the Mongol conquest (XIII century); medieval states in the XIV-XV centuries. The main stages of the formation of Kazakh statehood are also considered: the era of the Kazakh Khanate of the XV-XVIII centuries. Kazakhstan within the Russian Empire Kazakhstan in the period of civil confrontation and in the conditions of a totalitarian system; Kazakhstan during the Great Patriotic War; Kazakhstan during the formation of independence and at the present stage.			V								

	Т												
4	Philosophy	Philosophy forms and develops critical and creative thinking,	5		V	1		l 1	l 1	۱ ۱	1	1	
		worldview and culture, provides knowledge about the most		!	1	1		l i	l i	l i		1	
		common and fundamental problems of life and gives them a		!	1	1		l i	l i	۱ ۱		1	
		methodology for solving various theoretical and practical		t l	1	1		l i	l i	۱ ۱		1	
		issues. Philosophy expands the horizon of vision of the		t l	1	1		l i	l i	۱ ۱		1	
		modern world, forms citizenship and patriotism, promotes		!	1	1		l i	l i	۱ ۱		1	
		self-esteem, awareness of the value of human existence. It			1	1		l i	l i	! j		1	
		teaches to think and act correctly, develops skills of practical		t l	1	1		l i	l i	۱ ۱		1	
		and cognitive activity, helps to look for and find ways and		t l	1	1		l i	l i	۱ ۱		1	
		ways of life in harmony with yourself, society, with the			1	1		l i	l i	۱ ۱		1	
		world around you.		t l	1	1		l i	l i	۱ ۱		1	
5	Module of socio-	-PURPOSE AND OBJECTIVES OF THE COURSE	3	† †	v			1	1	 		1	
		The purpose of the course: the formation of theoretical	٦	t l	· 1	1		l i	l i	۱ ۱		1	
		lknowledge about society as an integral system, its structural		t l	1	1		l i	l i	۱ ۱		1	
	science)	elements, connections and relationships between them, the		t l	1	1		l i	l i	۱ ۱		1	
		peculiarities of their functioning and development, as well as		t	1	1		ļ i	ļ i	l i		1	
		the political socialization of technical university students,		t l	1	1		l i	l i	۱ ۱		1	
		ensuring the political aspect of training a highly qualified		t l	1	1		l i	l i	۱ ۱		1	
		specialist on the basis of modern world and domestic		t l	1	1		l i	l i	۱ ۱		1	
		political thought.		t l	1	1		l i	l i	۱ ۱		1	
		Tasks of mastering the discipline:		t l	1	1		l i	l i	۱ ۱		1	
		- the study of the basic values of social and political culture		t l	1	1		l i	l i	۱ ۱		1	
		and the willingness to rely on them in their personal,		t l	1	1		l i	l i	۱ ۱		1	
		professional and general cultural development;		t l	1	1		l i	l i	۱ ۱		1	
		- study and understanding of the laws of the development of		t l	1	1		l i	l i	۱ ۱		1	
		society and the ability to operate with this knowledge in		(1	1		l i	l i	۱ ۱		1	
		professional activities;		t l	1	1		l i	l i	۱ ۱		1	
		- ability to analyze social and political problems, processes,		t l	1	1		ļ i	ļ i	۱ ۱		1	
		etc.		t l	1	1		l i	l i	۱ ۱		1	
		BRIEF DESCRIPTION OF THE COURSE		t l	1	1		l i	l i	۱ ۱		1	
		The discipline is designed to improve the quality of both		t l	1	1		l i	l i	۱ ۱		1	
		general humanitarian and professional training of students.		t l	1	1		l i	l i	۱ ۱		1	
		Knowledge in the field of sociology and political science is		t l	1	1		l i	l i	۱ ۱		1	
		the key to effective professional activity of a future		t l	1	1		l i	l i	۱ ۱		1	
		specialist, as well as for understanding political processes,		t l	1	1		ļ i	ļ i	۱ ۱		1	
		for the formation of political culture, developing a personal		t l	1	1		l i	l i	۱ ۱		1	
		position and a clearer understanding of the measure of their		t	1	1		ļ i	ļ i	l i		1	
		responsibility.		t l	1	1		l i	l i	۱ ۱		1	
		responsibility. KNOWLEDGE, SKILLS, SKILLS AT THE END OF THE		t l	1	1		l i	l i	۱ ۱		1	
		COURSE		t l	1	1		l i	l i	۱ ۱		1	
				t l	1	1		l i	l i	۱ ۱		1	
		As a result of studying the discipline, the student must:		<u> </u>		<u>'</u>	<u> </u>			<u></u>	1	1	

					-	
know:						
* features of the sociological approach to the interpretation						
of the basic concepts and terms of social sciences;						
* basic classical sociological theories and schools;						
* key concepts of sociology: society, group, socialization,						
social facts and social actions, norms, values, social						
structure, mobility, culture, social institution, social						
organization, social process, etc.;						
the basic conceptual apparatus of political science						
* patterns of socio-economic, political and managerial						
processes, the main approaches to their study, as well as						
features of their application;						
be able to:						
* describe the processes taking place in society and the						
observed phenomena using sociological and political science						
terminology;						
* explain differences in approaches to the definition of						
sociological concepts;						
* to consider social and political phenomena, institutions and						
processes from different points of view, to argue their own						
position on the problem, comparing and comparing some						
theoretical perspectives;						
to find, analyze and present factual data, analytical						
information about social groups, political institutions,						
processes and phenomena, revealing abstract concepts using						
examples involving data of various kinds;						
possess:						
* the ability to use sociological and political science						
knowledge in practice to analyze phenomena and events of						
social reality;						
* skills of independent individual preparation, constructive communication and performing appropriate roles in the						
implementation of group projects, participation in						
discussions;						
* presentation of the results of individual and group						
analytical work in written and oral form;						
* skills of academic and grammatically correct written						
speech, text structuring, source processing, reference						
apparatus design.						
Module of socio-Module of socio-political knowledge (cultural studies,	5	V				
political knowledge psychology) is designed to familiarize students with the]		

	(cultural studies.	cultural achievements of mankind, on their understanding					l		1	l	1
	1.3	and assimilation of the basic forms and universal laws of the									
	psychology)	formation and development of culture, on the development									
		1 '									
		of their aspirations and skills to independently comprehend									
		the entire wealth of values of world culture for self-									
		improvement and professional growth. During the course of									
		cultural studies, the student will consider the general									
		problems of the theory of culture, leading cultural concepts,									
		universal patterns and mechanisms of the formation and									
		development of culture, the main historical stages of the									
		formation and development of Kazakhstani culture, its most									
		important achievements.									
		In the course of studying the course, students acquire									
		theoretical knowledge, practical skills and abilities, forming									
		their professional orientation from the standpoint of									
		psychological aspects.									
7		Required component. The aim of the course is to gain	5	V							
	communication	theoretical knowledge in information processing, the latest									
		information technologies, local and global networks, the									
	english)	methods of information protection; Getting the right use of									
		text editor editors and tabulators; creation of base and									
		different categories of applications.									
		Cycle of general ed	ucati	on disc	cipline	es					
		Componen	t of c	hoice							
8		The discipline studies the essence, causes, causes of	5		V						
		sustainable development of corruption from both historical									
		and modern points of view. Examines the prerequisites and									
	TP1 1	impacts for the development of an anti-corruption culture.									
	The basics of anti-	Studies the development of anti-corruption on the basis of									
	corruption culture	social, economic, legal, cultural, moral and ethical norms.									
		Studies the problems of the formation of an anti-corruption									
		culture based on the relationship with various types of social									
		relations and various manifestations.									
9		The discipline studies the basics of entrepreneurship and	5		V						
		leadership from the point of view of science and law;									
	E = 1	features, problematic aspects and prospects of development;									
	Fundamentals of	theory and practice of entrepreneurship as a system of									
	entrepreneurship	economic, organizational and legal relations of business									
	and leadership	structures; readiness of entrepreneurs for innovative									
		receptivity. The discipline reveals the content of									
		entrepreneurial activity, career stages, qualities,									
	•					•					

		competencies and responsibilities of an entrepreneur,							
		theoretical and practical business planning and economic							
		expertise of business ideas, as well as risk analysis of							
		innovative development, introduction of new technologies							
		and technological solutions.							
10		The discipline studies the tasks of ecology as a science,	5		V				
		environmental terms, the laws of the functioning of natural							
		systems and aspects of environmental safety in the							
		conditions of labor activity. Monitoring of the environment							
	safety	and management in the field of its safety. Sources of							
		pollution of atmospheric air, surface, groundwater, soil and							
		ways to solve environmental problems; life safety in the							
		technosphere; natural and man-made emergencies							
		Cycle of basi		_	S				
		University		onent					
11	General Chemistry	The purpose of the discipline is to study the basic concepts	4	V					
		and laws of chemistry; fundamental laws of chemical							
		thermodynamics and kinetics; quantum mechanical theory of							
		atomic structure and chemical bond. Solutions and their							
		types, redox processes, coordination compounds: formation,							
		stability and properties. The structure of matter and the							
1.0		chemistry of the elements.							
12		Objectives: to study the basic physical phenomena and laws	5	V					
		of classical, modern physics; methods of physical research; the relationship of physics with other sciences. The							
		following topics are considered: mechanics, dynamics of							
	Physics I	rotational motion of a solid body, mechanical harmonic							
	1 Hysics 1	waves, fundamentals of molecular kinetic theory and							
		thermodynamics, transport phenomena, continuum							
		mechanics, electrostatics, direct current, magnetic field,							
		Maxwell equations.							
13		The course is based on the study of mathematical analysis in	5	V					
		a volume that allows you to study elementary functions and							
		solve the simplest geometric, physical and other applied							
		problems. The main focus is on differential and integral							
	Mathematics I	calculus. The course sections include the differential calculus							
	ivianicilianes i	of functions of one variable, the derivative and differentials,							
		the study of the behavior of functions, complex numbers, and							
		polynomials. Indefinite integrals, their properties and							
		methods of calculation. Certain integrals and their							
		applications. Improper integrals.							

	Physics II	The course studies the laws of physics and their practical application in professional activity. Solving theoretical and experimental-practical educational problems of physics for the formation of the foundations in solving professional problems. Assessment of the degree of accuracy of the results of experimental or theoretical research methods, modeling of physical condition using a computer, study of modern measuring equipment, development of skills for conducting test studies and processing their results, distribution of the physical content of applied tasks of the future specialty.	5	V				V		
15	Mathematics II	The discipline is a continuation of Mathematics 1. The course sections include elements of linear algebra and analytical geometry. The main issues of linear algebra are considered: linear and self-adjoint operators, quadratic forms, linear programming. Differential calculus of a function of several variables and its applications. Multiple integrals. The theory of determinants and matrices, linear systems of equations, as well as elements of vector algebra. The elements of analytical geometry on the plane and in space are included.	5	V				V		
16		General provisions of the methodology of engineering design. Stages of creating cars. Design procedures. Principles of engineering design. Engineering design methods. Manufacturability of machine designs.	5						V	
17	The theoretical mechanics	Statics: reactions of communications; the theory of the moments; conditions of balance of flat and spatial systems of forces; the centre of grav-ity of a body. Kinematics: kinematics of a point; the elementary movements of a firm body; plane parallel movement of a firm body; free	5	V		V				
18	Strength of materials	Stretching and compression. Stresses in cross sections and deformations of a straight rod. Mechanical properties of materials under tension and compression. Calculation of strength and stiffness in tension-compression. Geometric characteristics of flat sections. Shear and torsion. Calculation	5	V		V				

	7		1	ı	1		1		Т	-	1
		of strength and torsional stiffness. Bend. Normal and									
		tangential bending stresses. Calculation of bending strength.									
		Theory of stressed and deformed states. The limit state									
		hypothesis. Complex resistance. Stability of the equilibrium									
		of deformable systems. Dynamic load.									
19		The purpose of the discipline is to acquire theoretical and	5	V						V	
		practical knowledge on the basics of electrical engineering									
		and electronics. The basic laws of the processes occurring in									
		electromagnetic and electronic circuits and methods for									
		determining the electrical quantities characterizing these									
	Electrical and	Iprocesses are studied. Methods of calculation of DC electric									
	Electronic	circuits are studied; analysis and calculation of linear AC									
	Engineering	circuits; analysis and calculation of magnetic circuits.									
		Electromagnetic devices and electrical machines.									
		Fundamentals of electronics and electrical measurements.									
		The element base of modern electronic devices.									
		Fundamentals of digital and microelectronics,									
		microprocessor tools.									
20		The purpose of the study of the discipline is to gain	5	v				V			
		knowledge of the general methods of studying and designing									
		the schemes of mechanisms necessary for the creation of									
		machines, devices, automatic devices and complexes that									
		meet modern requirements for efficiency, accuracy,									
	Theory	freliability and economy. The main task of the discipline is to									
	mechanisms and	lgive knowledge about the kinematic and dynamic									
	machine parts	characteristics of mechanisms with rigid and elastic links and									
		controlled kinematic chains, about methods for determining									
		the parameters of mechanisms according to the required									
		conditions, methods of vibration protection of a person and									
		a machine, about controlling the movement of mechanisms									
		and machines.									
21		The purpose of the discipline is to acquire theoretical	5		V					V	
		knowledge and practical skills of economic assessment of the									
		company's activities. The discipline studies the structure of a									
	Economics of	machine-building enterprise, fixed and current assets,									
		production capacity of the enterprise, material and technical									
		support of production, personnel, financial resources of									
	emerprise	production. The issues of forecasting and planning of									
		production, calculation of production costs, production costs,									
		economic efficiency, analysis and evaluation of the									
	i e	economic activity of the enterprise are studied.									
	Economics of a machine-building enterprise	company's activities. The discipline studies the structure of a machine-building enterprise, fixed and current assets, production capacity of the enterprise, material and technical support of production, personnel, financial resources of production. The issues of forecasting and planning of production, calculation of production costs, production costs, economic efficiency, analysis and evaluation of the									

_	1			-	-	-	-	-	-		-	
22		The purpose of studying the discipline is to form students'	5								V	
		scientific ideas about the nature and properties of										
		probabilistic processes, random variables, distribution										
		functions and statistical methods, mastering practical skills										
	Qualimetry	of working with random variables and methods of their										
	Quaninetry	search and evaluation. The subject of probability theory,										
		probability definitions, elements of combinatorics, random										
		variables and the laws of their distribution are considered.										
		The basics of mathematical statistics are studied - samples,										
		types of samples, point and interval estimates.										
23		The main purpose of the discipline is to study the methods of	6			V						
		manufacturing forgings, the operations of technological	-									
		processes, the principles of designing forgings and die										
		tooling Production of worknieges and parts by forging and										
	Forging and hot	hot stamping selection and calculation of the stamping force,										
	stamping	temperature regime, tools for processing metals and alloys.										
	technology	Study of the structure, mechanical properties of forgings and										
		finished products after the forging and hot stamping process.										
		Study of the structure, mechanical properties of forgings and										
		finished products after the forging and hot stamping process.										
24		The purpose of the discipline is to acquire theoretical and	5	V						V		
		practical knowledge of the reliability of technical systems										
		(machines). The fundamentals of probability theory and the										
		application of the laws of probability theory to the analysis										
		of technological and technical systems, including in										
	Probabilistic models	mechanical engineering, in procurement production, are										
	in industrial	studied. With the help of probabilistic and statistical models,										
	engineering	the problems of designing, manufacturing and controlling										
		products are solved. The use of such models in the										
		calculations and research of the accuracy of equipment and										
		technological processes, in the development and selection of										
		statistical methods for quality control of machine-building										
		products.										
25		The purpose of the discipline is to provide theoretical and	5							V		
		practical knowledge of the basic properties of structural										
	Construction	materials used in mechanical engineering, methods of their										
		heat treatment. The discipline considers: classification of										
		engineering materials, properties and characteristics of										
	neatments	materials, methods of studying the structure and composition										
		of materials, the diagram of iron-cementite. The production										
		of cast iron and steel, non-ferrous metal alloys is being										
25	Construction materials and heat treatments	The purpose of the discipline is to provide theoretical and practical knowledge of the basic properties of structural materials used in mechanical engineering, methods of their heat treatment. The discipline considers: classification of engineering materials, properties and characteristics of materials, methods of studying the structure and composition of materials, the diagram of iron-cementite. The production	5							V		

	7				ı						
		studied. The types of heat treatment, modes and									
		recommendations for their use are considered; promising									
		engineering materials.									
26		The purpose of studying the discipline is to form students'	5	V						V	
		knowledge of the basics of standardization,									
		interchangeability and practical skills in performing									
		technical measurements. The discipline studies the basic									
	Standardization,	principles of standardization, types of interchangeability,									
	interchangeability	uniform principles of building tolerance and fit systems for									
	and technical	standard joints. Accuracy standards of smooth cylindrical,									
	measurements	keyway, spline, threaded connections, cylindrical gears.									
		Tolerances and fits of rolling bearings. Methods of									
		measurement, measuring instruments and methods of									
		processing multiple technical measurements are studied.									
27		The purpose of the discipline is to provide knowledge of:	4						v		
21		modern methods of heating workpieces for subsequent	4						V		
		pressure treatment; designs of heating installations used for									
		these purposes; solving problems related to the design,									
		search and selection of furnace designs and heating									
		installations. The basic principles of the theory of heat									
	devices										
	devices	transfer, the mechanics of gases, the principles of calculation and selection of fuel, the basics of calculation of									
		technological processes of metal heating are considered.									
		Basic principles of design, selection of heating devices;									
		design of heating devices, their application in the design of									
		forging and stamping shops, sites.									
28		The purpose of the discipline is to acquire theoretical and	6			V	V				
		practical knowledge in the field of computer-aided design of									
		technological processes for processing materials by pressure.									
	Automated design	The discipline outlines the basic principles of modeling and									
	of PMP processes	CAD development of OMD processes. Aspects of									
	or run processes	constructing algorithms for calculating specific CAD tasks									
		are considered. Examples of the use of various CAD systems									
		for tool design are presented OMD - QForm technological									
		process modeling program.									
		Cycle of basi	c disc	ipline	S						
		Elective co	ompo	nent							
29		The purpose of the discipline is the formation of knowledge	5				V	v			
	Hydraulics and		5				•	•			
	hydraulic pneumatic	for processing, feeding and moving liquids and gases. The									
	drive	discipline deals with the issues of hydrostatics: basic									
	<u> </u>	deals with the issues of figurostatios, busic				ıl					

	٦			-			1			- 1	
		physical properties of liquids and gases; hydrodynamics:									
		motion of liquids and gases, Euler and Bernoulli equations,									
		modeling of hydrodynamic phenomena; hydraulic machines									
		and hydraulic drives. Fundamentals of pneumatic actuators,									
		pneumatic motors, equipment of pneumatic systems. The									
		basics of operation of combined hydraulic pneumatic									
		actuators are studied.									
30		The course "Mechanics of liquid and gas" examines the	5			V		V			
		models and physical properties of liquids and gases; the									
	Mechanics of liquid	forces acting in the fluid, hydrostatic pressure and its									
		properties; basic equations and laws of equilibrium and									
		motion of liquids and gases; flow regimes and methods for									
		calculating applied problems									
31		The purpose of the discipline is to acquire theoretical and	5		v						
		practical knowledge on the creation, operation and	J		•						
		improvement of forging and stamping equipment. The									
		discipline examines the composition and structure of forging									
		and stamping equipment (FSE), the principles of design and									
		analysis of FSE; structure, kinematic and force analysis of									
		crank machines; stamping and forging hammers, hydraulic									
		forging and stamping machines. Forging and stamping									
		machines for special purposes are studied: horizontal forging									
		machines, bending and sheet-stamping presses, rotary									
	Forging and	forging machines, principles of their operation, issues of									
		improving the reliability of operation.									
32	stamping equipment	The purpose of teaching this discipline is to expand the	5								
32		theoretical knowledge of students in the field of	3		V						
		technological equipment for sheet-stamping production,									
		means of loading pressing equipment with blanks of various									
		types, acquiring practical skills in designing units and									
	Pressing equipment	mechanisms of the main and auxiliary equipment for sheet									
		stamping. The objectives of the discipline are the study of the									
		main units and mechanisms of technological equipment for									
		sheet-stamping production, the study of schematic diagrams									
		and designs of devices for automatic loading of presses with									
		blanks from a strip, sheet and piece blanks of universal									
		presses.									
33	Design of forging	The purpose of the discipline is to acquire knowledge on the	5		V			V			
	and stamping	design of forging and stamping equipment in procurement									
	equipment	production. Basic concepts about the production technology									
	Taipinent	of standard parts of forging and stamping equipment.									

							ı	- 1			
		Processing of bab, shabots, guides and shtampovyh plates.									
		Technological processes of assembly of forging and pressing									
		machines. Features and technological processes of									
		production of the main parts of forging and stamping									
		equipment, assembly processes of forging and stamping									
		equipment used for the manufacture of forging and stamping									
		equipment, stamps and die tooling.									
34		The purpose of the discipline is to acquire knowledge and	5			V		V			
		skills in calculating and designing die tools, principles of									
	Darian of familia	creating automated stamp design systems. The discipline									
	Design of forging	considers design features, issues of durability and types of									
	stamping	wear of die tools for hot and cold deformation of metals and									
	equipment	alloys. The stages of stamp design, design development,									
		sequence of design and design drawings are studied. Stages									
		and principles of computer modeling of stamps.									
35		In the process of study of discipline students get skills of	5					V	V		
		global analysis of technology and equipment for the special									
		methods of OMD. Group methods of the cold stamping.									
		Stamping by rubber, operations, by the выполняемы method									
		of stamping by rubber. Rigging for stamping rubber.									
		Gidroshtampovka. Rigging and equipment at									
	pressure	гидроштамповке. Магнито-импульсная treatment.									
		Electro-hydraulic stamping. Stamping by an explosion.									
		Rolling and rolling. Cold deformation of rolling of circular									
		purveyances and wares a method. Rigging and equipment for									
		rotary deformation.									
36		The purpose of the discipline is the formation of skills and	5					V	V		
		research skills of plastic shaping of metals in the									
		development of technological processes of pressure									
		treatment. The discipline examines the physical foundations									
		of strength and plasticity: the structure of crystalline solids,									
		the strength of an ideal crystal, crystal lattice defects, plastic									
	Physical bases of	deformation and hardening, dislocations in the theory of									
		plastic deformation, classification of types of destruction.									
		The elements of continuum mechanics, the phenomenology									
		of metal destruction during plastic deformation, the criteria									
		of strength and plasticity of materials are studied. Linear									
		fracture mechanics, viscous fracture mechanics, brittle and									
		viscous fracture resistance characteristics									
	1	Cycle of profi	le di	cinlin	25			ļ			
		University (-	<i>-</i> 13						
L		Omversity (P	Jucint							

	7										
37	Processes o machine-building production	The purpose of the discipline is to acquire knowledge of technological methods for obtaining and processing blanks and machine parts. The discipline studies the general characteristics of metals and alloys used in mechanical engineering, the technological foundations of metallurgical production, the technology of metal processing by pressure, the technology of foundry production, the technology of welding production. The technology of production of blanks and machine parts from non-metallic materials is considered; features of welding of various metals and alloys.	5	V					V		
38	Labour safety	The purpose of the discipline is to form knowledge of legislative acts and norms aimed at ensuring occupational safety. In the discipline, students study legal and regulatory documents on labor protection (LP), occupational hygiene and industrial sanitation. Dangerous and harmful production factors, safety measures during installation and operation of technological equipment, emergency situations and elimination of their consequences are considered. In the discipline, they study the basics of LP management, rationing, methods of assessing and forecasting LP, methods of monitoring and auditing LP.	5		V			V			
39	Cold stamping technology	The purpose of the discipline is to study the technological foundations of cold stamping. As a result of studying the discipline, the future specialist must master the methods of developing the technological process of cold stamping, know the rules for designing technological equipment and equipment selection. The discipline studies the technological processes of cold stamping, reveals the content and features of the process of developing and calculating the processes of stamping and die tooling, their layout and structure, characteristics, requirements, design evaluation criteria.	5			V			V		
40	Computer-aided design systems of machine structures	The purpose of the course is to familiarize students with various automatic design systems and acquire the necessary knowledge and skills to develop various technical documentation and perform calculations using a personal computer. The task of the discipline: to give the necessary knowledge on various kinds of automatic design systems of technical and design documentation, to teach how to use the knowledge gained.	4	v		V					
		Cycle of profi	le dis	ciplin	es						
		Componen									
Ь			•								

_	⊣		-	1	 		1	1	 	
41		The goals are to increase the basics of knowledge in general issues of automation of production processes in PMP. The discipline complements the knowledge about the automation	5		V	V				
	Automation of	of the processes of tool support, product quality control,								
		warehousing, personnel labor protection, transportation,								
		maintenance, management and production preparation. The								
	r	task of studying the discipline is to determine the level and								
	pressure									
		degree of automation for the formation of the structure of the production process in PMP and its components, the design								
10		and calculation of flexible automatic assembly systems.								
42		The purpose of the discipline is to study and analyze the use	5				V		V	
		of composite materials for the manufacture of high-quality								
		machine parts and economic indicators of manufacturing.								
	Composite	The discipline studies the structure and properties of								
	materials processing	composite materials, the properties of matrix materials. The								
	technology	development of special equipment, the creation of the								
		required energy state of the processed material, the use of								
		combined energy effects that ensure high economic								
		performance of products made of composite materials are								
		studied.								
43		The purpose of the discipline is to gain knowledge on the use	4		V	V				
		of CAD in the design of technological processes for								
		processing materials by pressure. The discipline considers								
	Computer-aided	methods of mathematical and graphical modeling, methods								
		and principles of calculations and drawings of die tooling for								
	materials processing	metal processing by pressure using CAD. For the design								
		development of technological process models in OMD,								
		volumetric design systems (Pro/Engineer, SolidEdge,								
		SolidWorks, Compass 3D, AutoCAD) are considered.								
44		The purpose of the discipline is to prepare the student to	4	V		V				
		solve problems related to the design of workshops, the ability								
		to find and choose progressive design and technological								
		solutions. The composition of the machine-building plant.								
		Determination of the quantity and loading of equipment.								
	Production design	Selection of the type and calculation of heating devices.								
	i roduction design	Calculation of the number of workers. Determination of the								
		areas of departments within the workshop. The layout of the								
		main and auxiliary sections, the transport system of the								
		workshop. Design methods. Classification and structure of								
		the main workshops. Construction design. Automation of								
		design of workshops of machine-building plants								

_					 		1		 	
45	Welding equipment and tools	The purpose of studying the discipline is to familiarize students with the technological processes used in modern welding production in the manufacture of various welded structures. The objectives of studying the discipline are to acquire sufficient knowledge on the production of welded structures; to develop an engineering idea of the feasibility of using certain technical means, techniques and methods that provide conditions for the flow of welding processes in	6			V		V		
		the established modes.structures.								
46	Properties and processing of engineering materials	Mechanical properties and structural strength of materials. Technological and operational properties of materials. Atomic-crystalline structure of metals and alloys. Deformation and destruction of materials. Theory of alloys. Iron and iron alloys. Technology of heat treatment of steel. Chemical heat treatment of surface hardening of parts. Alloy steels and alloys. General purpose structural steels. Tool alloys. Special alloys. Non-ferrous metals and alloys. Non-metallic materials. Powder materials. Composite materials.	6				V		v	
47		Objectives of the discipline: obtaining knowledge on the	6	v		v				
	Organization and planning of forging and stamping production	organization, methods of designing factories, workshops of forging and stamping production, the basics and principles of designing workshops of forging and stamping production, taking into account the generally accepted provisions of calculation and construction of technological processes for manufacturing parts, devices principles of processing and		•		•				
48	Basics of designing machines for pressure processing	The construction and working conditions of rolling shop equipment, advantages and disadvantages of certain types of equipment, typical modern designs of rolling machine machines and mechanisms, prospects and directions for improving rolling production equipment technical and	6		V	V				

_	1	, · · · · · · · · · · · · · · · · · · ·		1	1	,	,		,	,	
		of improvement of equipment of rolling production,									
		technical and economic indicators of equipment of rolling shops are studied.									
49		The purpose of studying the discipline is the formation of	5			v			v		
'		knowledge, skills and abilities in the field of advanced	3			·			·		
		technologies for processing machine-building materials and									
	A 1 1	curfaces of machine parts. The discipline presents the types									
	Advanced materials processing	of surface treatment of workpieces by ultrasonic,									
	technologies	electrophysical and electrochemical methods, laser									
	technologies	treatment. Technologies of heat treatment and surface									
		alloying of metals using plasma, electron beam, waterjet and									
		electroerosion methods. Methods of hardening treatment,									
		methods of coating are considered.									
50		The purpose of the discipline is to master the necessary	5			V			V		
		techniques for designing and calculating stamps for cold									
		sheet stamping and molds for the manufacture of parts from									
	Tool and mold	press materials. Objectives of the discipline: the student must learn how to develop working drawings of parts made by									
	design	cold stamping from sheet material and pressing from a press									
		material; learn how to design stamps for various									
		technological operations of cold stamping, as well as molds									
		for compression pressing of plastic parts.									
51		The purpose of teaching the discipline is to form the skills of	5					v			
		the profession as a constructor using the Solid Works									
		program. The purpose of the discipline is to form students '									
		basic concepts of modeling(structure,									
		classification, application of models, requirements for									
		models), to introduce students to the theoretical foundations									
		and ways of optimization of modeling processes in									
	Inventor)	Mechanical Engineering, processing and obtaining									
		information from various sources, to analyze the structure of the model, to know its application ,to know the methods of									
		constructing models, to use modern applied programs in the									
		design of machine mechanisms and nodes. Machines, drives,									
		and systems being studied, development of physical and									
		mathematical models of phenomena and objects									
52		The concept of additive manufacturing. The history of the	5			v					
	Additive	emergence and development of additive technologies. 3D									
	Manufacturing	modeling as the basis of additive technologies. Type of print									
	avianuiaciuming	FDM. Type of print SLA. Type of printing DLP. Print Type									
		SLS / SLM. Type of printing 3DP. Type of printing LOM.									

		Types of printing MJM, EBM. Optimization of additive manufacturing. Preparation of 3D models for printing. Engineering calculations in additive manufacturing. Accounting for the characteristics of materials in additive manufacturing. The concept of slicers. Variations and correlation of print parameters. Defects and their classification. Post processing. Mechanical processing of products. Heat treatment. Chemical treatment. Optimization of the print taking into account post-processing.						
53	Theory and practice of project management	The purpose of mastering the discipline is to expand and deepen knowledge about modern project management technology and study the principles of using project management in practical tasks. Mastering the discipline involves an introduction to the problems of project management and the study of project management methodology, familiarization with the tools and methods of project management at all stages of the project life cycle, starting with initialization project, planning its work, organizing their use and control, and ending with completion.		V			v	
54	Canstone Project	The purpose of the discipline is the formation of a complex of theoretical knowledge and practical skills in management, maintenance and support of technical preparation of production. Practical possibilities are considered and professional skills of students to work in a team are formed. Students solve real engineering and technical problems of production, formation and implementation of the life cycle of machine-building products based on the collection of information, critical assessment of the feasibility of the project, in-depth analysis and execution of the project report.					V	

${\bf 5}$ Curriculum of the educational program

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I.SATPAYEV

API

CURRICULUM

of Educational Program on enrollment for 2022-2023 academic year

Educational program 6B07220- "Machines and technologies for processing new materials Group of Educational programs B069 - "Production of materials (glass, paper, plastic,

	Form of study: full-time Name of disciplines	Duration of Cycle	Total	Total	classroom	SIS	Form of	Al	location o	f face-to-fa	ice trainin	ering and g based on	courses a	nd semes
	Name of disciplines	Cycle	amount	hours	volume of	(includin	control		urse	II co	ourse	III co	ourse	1V
Discipline			in		lek/lab/pr	g TSIS)		1	2	3	4	5semeste	6	7
code			credits			in hours		semester	semester	semester	semester	r	semester	semeste
VOLE (OF GENERAL EDUCATION	DISCIPI	NES (C	ED)										
YCLE C	OF GENERAL EDUCATION	DISCIPL	NES (G	M M	-1. Module	of langu	iage trai	ning						
LNG 108	English language	GED, RC	10	300	0/0/6	210	Е	5	5					
LNG 104	Kazakh (Russian) language	GED, RC	10	300	0/0/6	210	Е	5	5					
				N	1-2. Modul	e of phys	ical trai	ning						
	Physical Culture	GED, RC	8	240	0/0/8	120	Difcredit	2	2	2	2			
104				M-3.	Module of	finforma	tion tecl	inology						
-	Information and communication				2/1/0	105	Е				5			
CSE 677	technologies (in English)	GED, RC	5	150										
					Aodule of s			elopmen			T			
HUM 100	Modern History of Kazakhstan	GED, RC	5	150	1/0/2	105	SE		5		5			
HUM 132	Philosophy	GED, RC	5	150	1/0/2	105	Е		-					
HUM 120	Socio-political knowledge module		3	90	1/0/1	60	Е				3			
	(sociology, politology) Socio-political knowledge module	GED, RC	100		2.00.11	150	Е			5				
HUM 134	(culturology, psychology)		5	150	2/0/1									,
		M	-5. Mod	ule of an	ti-corrupti	on cultu	re, ecolo	gy and li	fe safety	base		T	T	
HUM 133	Fundamentals of anti-corruption													
110M 152	culture	OFD CCII	5	150	2/0/1	150	E			5				
MNG 488	Fundamentals of Entrepreneurship and Leadership	GED, CCH	3	150	2/0/1	150	-							
CHE 656	Ecology and life safety													
	OF BASIC DISCIPLINES (B	D)												
CICLL			M	-6. Mod	ule of phys	ical and	mathema	atical tra	ining					
MAT 101	Mathematics 1	BD, UC	5	150	1/0/2	105	E	5				-		-
PHY 111	Physics I	BD, UC	5	150	1/1/1	105	E	5	-		-	-		
MAT 102	Mathematics II	BD, UC	5	150	1/0/2	105	E	-	5	-				
PHY 112	Physics II	BD, UC	5	150	1/1/1	105	E	- dula)			-		-
			-	T	. General t		1		T	T	T			T
MSM132	Introduction to engineering design	BD, UC	5	150	1/2/0	105	Е	5	-	-	<u> </u>	-	-	-
THE815	General chemistry	BD, UC	4	120	1/1/1	75	E	4		-		-	-	-
MSM409	Standardization, interchangeability	BD, UC	6	180	2/1/1	120	E			6				
	and technical measurements Resistance of materials	BD, UC	5	150	1/1/1	105	Е				5			
GEN408	Probabilistic models in industrial		5	150	1/1/1	105	E			5				
MSM106	engineering	BD, UC			100/2010	1100000	1000	-	-	5	-	-	-	-
GEN412	Theoretical mechanics	BD, UC	5	150	2/0/1	105	E	+	-)	+	-	-	1
MSM133	Structural materials and heat treatment	BD, UC	5	150	1/2/0	105	Е				5			
MONTE	Theory of mechanisms and	BD, UC	5	150	1/1/1	105	Е					5		
MSM410	machine parts	55,00	-	1.50		-	-	-	-	_	1	1		
ELC101	Electrical and Electronics	BD, UC	5	150	1/1/1	105	Е				5		-	-
ISO164	engineering Qualimetry	BD, UC	5	150	2/0/1	105	Е			-		5	-	+
MCH416	Forging and hot stamping	BD, UC	5	150	1/2/0	105	Е					5		
	technology Economics of a machine-building		-	150	1/0/2	105	Е					5		
MSM419	enterprise	BD, UC	5					-		-	-	4	-	+
MSM420	Heating and heating devices	BD, UC	4	120	1/0/2	75	Е		-	-	-	-		6
MSM414	Automated design of PMP processes	BD, UC	6	180	2/0/2	120	Е							0
3201	Elective	BD, CCH	5	150	1/0/2	105	E					5	5	-
3202	Elective	BD, CCH	5	150	1/0/2	105	E			-		-	5	-
	Elective	BD, CCH	5	150	2/0/1	105	E				-	-	3	5
3203			5	150	1/0/2	105	E							

AAP184	Educational practice	BD, UC	2						2					
YCLE	OF PROFILE DISCIPLINES	(PD)												
			M-8.	Module o	of producti	on and t	echnologic	al prepa	ration					
SAF111	Labor protection	PD, UC	5	150	1/0/2	105	Е							5
MCH158	Cold stamping technology	PD, UC	5	150	1/1/1	105	Е							5
MSM129	Technological processes of machine-building production	PD, UC	5	150	2/1/0	105	Е						5	
MSM411	Computer-aided design systems of machine structures	PD, UC	4	120	1/2/0	75	Е						4	
3301	Elective	PD, CCH	5	150	2/0/1	105	Е						5	
3302	Elective	PD, CCH	4	120	2/1/0	75	E						4	-
4303	Elective	PD, CCH	6	180	2/0/2	120	E							- 6
4304	Elective	PD, CCH	6	180	2/0/2	120	E							6
4305	Elective	PD, CCH	5	150	1/2/0	105	E							,
4306	Elective	PD, CCH	5	150	2/0/1	105	E							
AAP143	Production Practice I	PD, UC	2								2			
AAP183	Production Practice II	PD, UC	3										3	
	-			M-	9. Manage	ement tra	ining mod	lule						
4307	Elective R&D	PD, CCH	5	150	2/1/0	105	Report							
				N	1-10. Modu	ile of fin	al attestati	on						
ECA003	Preparation and writing of a thesis (project)	FA	6											
ECA103	Defense of the thesis (project)	FA	6											
				M-11. N	Module of	addition	al types of	training						
AAP500	Military affairs	ATT	0					lice il const						
	Total based on UNIVERSITY:							31	29	28	32	29	31	
	Total based on Citt's ERSTIT							60		60		60)	

	Number of credits for the entire	period of	study		
	Cycles of disciplines		Cre	dits	
Cycle code		required component (RC)	university component (UC)	component of choice (CCH)	Total
GED	Cycle of general education disciplines	51		5	56
BD	Cycle of basic disciplines		92	20	112
PD	Cycle of profile disciplines		24	36	60
	Total for theoretical training:	51	116	61	228
FA	Final attestation	12			12
	TOTAL:	63	116	61	240

Decision of the Educational and Methodological Council of Kazntu named after K.Satpayev. Protocol No. 20 12.

Representative of the Council for EP from Employers

F KazNRTU 705-03 Educational program