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Symbols and abbreviations
Ai - set of actions

AI - Artificial Intelligence
ANN - Artificial Neural Network
ARIMA - Autoregressive integrated moving average
bk

j - bias
ck

j - results of node j at the layer k after convolution
CI - Computational Intelligence
CNN - Convolutional Neural Network
CPU - a central processing unit
DL - Deep Learning
EC - Exolutionary Computations
EW - East-West
FCNN - Fully-connected neural network
FL - Fuzzy Logic
Fi, t - link flow on the link i at time t
GPU - a graphics processing unit
GRU - Gated Recurrent Unit
ht−1 - holds the information for the previous t-1 units
h j

t - current memory content, use the reset gate to store the relevant information from
the past
kNN - k-nearest neighbours
LSTM - Long-Short-Term memory
MARL- Multi-agent Reinforcement Learning
MDP - Markov Decision Process
MSE - Mean Squared Error
n - number of estimations
NLP - Natural Language Processing
NS - North-South
OD - Origin-destination
pooling - layer of CNN that would reduce the number of parameters when the images
are too large
r j
t - reset gate of GRU is to decide how much of the past information to forget

RL - Reinforcement Learning
RNN - Recurrent Neural Network
SI - Swarm Intelligence
SN - South-North
SUMO DLR - Simulation of Urban MObility
SVR- Support Vector Regression
tanh - nonlinear activation function. It is bound to the range (-1, 1)
TSC - Traffic Signal Control

5



U - weight of ht−1
Uz - own weight of update gate for ht−1
Ur - own weight of reset gate for ht−1
WE - West-East
W - weights of input xt
Wr - own weights of reset gate for xt
Wz - own weights of update gate for xt
wk

i j -weights at the layer k
xt - data at timestep t
xk−1

i - input data at k-1 layer
xk

j - output data of j at the layer k after applying activation function
xk+1

j - output data after pooling layer
Yi - predicted value
Ŷi - target value
x j

t - update gate z for timestep t in the GRU, which decides how much the past state
affects the current state
1D - one dimensional
2D - two dimensional
θ - activation function
σ - sigmoid activation function is applied to squash the result between 0 and 1
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Chapter 1

Introduction
General characteristics of the work. The given work is devoted for research

and development of the link flow estimation and adaptive traffic signal control mod-
els to reduce the traffic congestion in the transport network. The study proposed
estimation and control models based on Computational Intelligence Techniques.

Relevance of the work. Nowadays the rapid growth of vehicles in urban areas is
a serious problem. Traffic congestion entails many negative consequences, such as
travel delays, air pollution and health problems. Therefore, there is an urgent need
in managing traffic flows as efficiently as possible.

A transport network is a complex non-stationary open environment with multi-
ple heterogeneous stochastic agents such as intersection controllers and road users.
Changes in such a network may occur due to random demand fluctuations, supply
degradation, or actions of agents. Thus, it makes the task of adaptive Traffic Signal
Control (TSC) extremely challenging.

Goal of the research. The goal of the work is researching and developing the
effective methods for link flow estimation and traffic signal control by using Com-
putational Intelligence Techniques.

Objectives of the research. To achieve this goal we set several objectives:

• A review of previous researches in traditional traffic signal control and com-
putational intelligence methods for development of effective traffic signal con-
trollers.

• An analysis of computational intelligence techniques including neural net-
work, reinforcement learning, fuzzy logic systems, multi-agent systems for
traffic signal management.

• Building an experimental environment on a simulator.

• Designing online model-free Q-learning traffic signal controller for an isolated
intersection.

• Development of the Reinforcement Learning intersection controller with deep
Q-network.
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• Designing link flow estimation models using deep learning techniques.

• Development of the adaptive traffic signal controller based on Artificial Neural
Network

• Implementing simulation and computational experiments

Subject and Object of the research. The object of the research is a traffic flow
in a transport network. The subject of the study is a model for intelligent traffic flow
management.

Research methods. The main research approaches are computational intelli-
gence techniques. The design of control and estimation models is based on sim-
ulations of the traffic flow at the microscopic level. The Reinforcement Learning
method is used for adaptive control of traffic flows. The tabular method is used for
a simple formulation of the problem, and the Deep QNetwork approach for an ex-
tended view. In addition, a different approach for traffic management is presented,
where the tasks of estimation and control are separated. Deep learning methods are
used to build a link flow estimation model. The data is treated as a time series. The
models are based on convolutional and recurrent neural networks. Estimation-based
control is performed by a model based on a feed-forward fully connected neural net-
work. Simulator SUMO is used for building experimental environments. Numerical
experiments are used to evaluate the quality of models and make appropriate correc-
tions if necessary. Synthetic data obtained by generating on the simulator were used
for the experiments.

Scientific novelty of the work. Adaptive traffic controller that works without
any knowledge of the environment is proposed in the given work. System based on
Reinforcement Learning method, where the reward function is one of the main com-
ponents, is designed. Novel reward function is invented. Singularity of the given
reward function is that it consists of equilibrium and queue reduction terms.

In the given work together with lots of advantages of RL there were identified
some disadvantages in the scope of TSC problem. For instance, it is basically de-
signed for closed environments rather than for dynamically changing ones. If an RL
agent is placed in the dynamically changing environment, every time the demand
changes it has to relearn its decision making policy. One of the other disadvantages
of RL is that the agents are designed to operate without reference to each other. They
are not good at collaborative work since any actions of a single agent changes the en-
vironment for the other ones. Hence, it affects the stationary assumption. Moreover,
when the agents work in collaboration, they have to share their states and coordinate
actions. That implies the exponential rise of the state and action space as the number
of agents increments.

A number of deep learning models proposed in this thesis represent a new ap-
proach to estimating link flows in transport networks. The link flow is treated as the
probability of vehicles being generated in unit time. The value is not the exact pro-
portion of the vehicles arrived, but represents some other properties of traffic flow in
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the given link. The models that currently dominate in scientific journals use instant
results as the number of halting cars or waiting time at the given moment. However,
we consider input data as a timeseries. There are two key issues when time series
are used for flow estimation: the time series analysis requires the process to be sta-
tionary, however, the traffic flow is dynamically changing; the spatial characteristics
of the time series data are not taken into account in the classical methods. However,
when sequential data are considered it is important to take into account a more deep
representation of features. The given issues have been solved by a hybrid model of
RNN and CNN, which was first proposed in this study. The results obtained in this
dissertation will significantly advance the field of AI in TSC.

Key statements to be defended. According to the results of the study, the fol-
lowing statements are to be defended:

• the state of the problem and existing solutions is described;

• online model-free Q-learning based adaptive traffic signal controller is pro-
posed (Q-table, Deep-QNetwork);

• novel reward formulas are presented;

• possibility to predict the link flow in the near future based on pregained data,
if given data goes back and is sampled every period of time is proved;

• novel link flow estimation models based on deep learning are presented;

• solving the problem of TSC using the MAS approach for a non-stationary
environment is proposed;

• estimation of optimal signal plan for a given traffic network if we know the
demand is implemented;

• numerical experiments results and discussions are provided.

Theoretical and practical value of the work. The algorithms and models devel-
oped during the research can be used for developing new methods for traffic signal
control. They also can be integrated in any kind of projects related to the Intelligent
Transportation System. The obtained research results can be used for a further the-
oretical investigation of the given topic, in the traffic control, traffic flow prediction
and for the optimization of the existing traffic signal control systems.

The performed studies allow us to expand and deepen knowledge in the field
of adaptive control of traffic flows and consider the problem as a task of Artificial
Intelligence.

The degree of validity and reliability. The reliability of the obtained results
was proved on the basis of algorithms and computational experiments with the use
of simulator, publications in journals, including journals cited in SCOPUS, 2 cer-
tificates of copyright, as well as numerous discussions at seminars held in King’s
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College London (London, UK), Kazakh-British Technical University, Satbayev Uni-
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assistance in completing the dissertation work.

Structure and scope of the thesis. The thesis is presented on 92 pages of type-
written text. It consists of normative references, list of symbols and abbreviations,
introduction, five main chapters, conclusion and references. The dissertation in-
cludes 19 tables, 26 figures. List of references consists of 91 titles.

First chapter presents an introduction that describes the problems of the disser-
tation work and its content.

In the second chapter general concepts of traffic signal control are described.
Background information about basic notations, general architectures for traffic op-
timization, simulation types are given. In addition, detailed review of the existing
traffic signal control methods are shown.

Third chapter presents an overview of Reinforcement Learning methods. Ele-
ments and basic types of the given methods are described in the current section.

In the fourth chapter traffic signal control method based on Reinforcement
Learning is proposed. Two approaches are implemented in the scope of the TSC
problem. Numerical experiments, simulations and results are shown in the given
chapter.

Fifth chapter proposed link flow estimation module based on deep learning
models. An overview of the method and experimental results with appropriate ta-
bles and charts with their discussion are given. In addition, comparative analysis of
the proposed models are presented.

In the sixth chapter adaptive traffic signal controller using link flow estimations,
that is designed on the basis of ANN is presented. Related works and proposed meth-
ods are described in the chapter. Experimental results and discussion are given.

Conclusion provides the main outcomes of the current work.
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Chapter 2

Traffic Signal Control (TSC)
Background

The world is experiencing population growth and urbanization, which leads to
an increment in the number of vehicles in transport networks. This fact points to
the need to create efficient transport systems. Congestion that takes a long time
strongly affects the social, economic, environmental and psychological sphere of life
of the population. Reconstruction of road systems or modification of infrastructure
is one of the methods to raise highway capacity. However, this is very expensive, and
sometimes not a real approach. Therefore, the optimization of the existing control
system through artificial intelligence is a necessary topic for research. Intelligent
traffic con- trol systems ensure efficient operation of traffic lights in real time. Such
systems have the capability to adjust to changes in the situation on the roads. With
optimal management, the following goals can be achieved: minimizing the number
of waiting cars, reducing delays at intersections,the safety of all users of the transport
network,as well as balanced traffic at intersections. The effective management of
vehicles entails a reduction in emissions into the around, which has a positive impact
on the environment and public health.

Various scientific studies [1],[2],[3] are conducted in the field of implementation
and use of computational intelligence techniques for solving the task of intelligent
traffic signal control. Due to their ability to learn, these methods have the force
to figure out concrete issues. The purpose of this work is to apply computational
intelligence methods to the problem of traffic signal control.

Traffic signals or traffic lights, traffic signal controllers are signaling devices for
controlling conflicting directions in the road space. Traffic lights are installed at
intersections, pedestrian crossings, where they give the right to move in one direction
for a certain length of time. The first traffic lights appeared in the early 20th century
[4]. With the change in road transport infrastructure, traffic lights were also modified.
There are three main generations of traffic signals: fixed, actuated and adaptive. The
fixed control has a predetermined sequence of traffic light signals duration. It is
completely fixed and unchangeable. The second type of traffic lights has a specific

12



plan of action. If a traffic jam is detected on the road, the traffic light changes the
signal plan to a predefined one. That is various kinds of signal plans are provided in
advance for distinct situations. An inductive loop detector [5] is used to detect traffic
jams. This method is not fully adaptive, but at the same time adapts to the situation
in real time. The adaptive traffic signal controller is trained and optimized gradually,
adapts to the environment, is able to detect changes on the roads and make a decision
in real time. Information about road conditions is obtained from detectors installed
on road sections or from outdoor surveillance cameras, and data can also be obtained
through GSM operators. After receiving the data, the corresponding duration time
of each traffic light signal is calculated. More detailed explanations about the traffic
light controller are provided in the following section.

This chapter provides a review of related materials and the basic terminologies
used in traffic signal controlling methods. Also types and comparison of existing
traffic light control methods, general architectures that can be applied for traffic op-
timization and types of simulation are included.

2.1 Literature review
A signalised intersection is designed for the efficient and safe passage of con-

flicting directions of traffic flow in time. The main unit in the traffic signal control
system is a signal group, which defines a set of lights that matches to certain traffic
in the intersection: green, red, amber.

• Green signal time - period of time while the movement of vehicles in the given
lane of intersection is allowed.

• Red signal time - period of time in which movement is not allowed.

• Amber - requires to slow down and prepare for the traffic light to switch to the
red signal.

Figure 2.1: Sample of 4 phases
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Figure 2.2: Sample of phase-cycle-traffic flow relationship.

• A phase - is a part of cycle length that corresponds to a combination of traffic
movements that have the order of passage for the green signal time (Figure
2.1). These movements follow simultaneously without conflicting with other
traffic flows. The sum of all phases gives a cycle length (Figure 2.2).

• Link is an adjacent lane group where traffic forms a single queue.

• Cycle length (cycle time) - the time during which each phase has been enabled
once.

• Split is the duration of each phase in a cycle. It represents a distribution of
the cycle time to the individual phases. Represents the green time allocated to
each phase.

• Offset is a time shift among the beginning of a green signal for neighboring
intersections to ensure the devoid movement of vehicles without encountering
all red signals.

• Delay is a total averagehalting time per vehicle in each lane in the transport
network.

• Safety requirements - Due to presence of several conflicting traffic flows at
each intersection, some safety requirements must be realized. First, each sig-
nal plan must not proceed at the same time with the conflicting traffic flows.
Second, there must be a certain short period of time when all the traffic flows
stop before switching signal plans. This will let vehicles that entered the in-
tersection exit it without disturbing conflicting traffic flow. In addition, there
should be implemented some requirements that ensure the safety of pedestri-
ans [6]. As it was mentioned above they fall outside of the given work.

Traffic signal controllers based on architecture consider general three strategies:

• Fixed-time control

• Actuated control
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• Adaptive or intellectual control

2.1.1 Fixed-time control
Fixed-time or so called pre-timed control method is an algorithm of offline opti-

mization, where the duration of phase orders is fixed and does not adapt according to
changes in traffic flow. The given approach takes the traffic demand as stable. Signal
time and cycle length are selected offline and based on data obtained previously. In
comparison with other methods fixed-time control reduces the algorithm implemen-
tation cost due to the absence of any detectors that should consider traffic jams and
other situations that occur at the current time.

The control parameters in the fixed-time controller are mostly calculated based
on Highway Capacity Manual (HCM) [7] or Webster formula [8]. Webster method
is described below. The best cycle length is calculated as following:

C =
1.5L+5

1−∑
n
i=1 yci

(2.1)

where

• C is proper cycle length in seconds;

• L is a total unusable time at each cycle in seconds;

• yci is critical lane volume each phase/saturation flow

• n is a number of phases in one cycle.

The best green time that is depending on v/s relation is calculated as following:

gi =
(v

s)ci

∑
n
i=1(

v
s)ci

xG (2.2)

where

• gi is optimal green time duration in phase i;

• v is flow rate;

• s is saturation flow rate;

• G =C−L is the total green time duration in one cycle in seconds.

The HCM method is based on the similar approach as the Webster method. To
allocate green time among different signal phases, which is to equalize the degree of
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saturation (v/c ratio) of the critical lane group of each signal phase [7]. The saturation
degree is calculated as the following:

Xci =
vci

cci
=

vciC
scigci

(2.3)

where

• C is cycle length in seconds;

• Xci is critical degree of saturation for phase i;

• cci = sci
gci
C is critical lane group capacity for phase i;

• gci is green time in phase i (s)

Xc, the critical v
c ratio for the whole intersection is defined as

Xc =
n

∑
i=1

(
v
s
)ci(

C
C−L

) (2.4)

The cycle length is calculating as following:

C =
LXc

Xc−∑i=1 n(v
s)ci

(2.5)

Timing plans of fixed-time control methods are defined by calculating the mean
amount of traffic. In everyday life, traffic flow is possible to vary very rapidly accord-
ing to day of the week, time and the accidents that sometimes occur. It is obvious
that given methods cannot consider traffic flow effectively. Therefore, in real life the
pre-timed controllers should be used in network locations where traffic flows at a low
level.

The settings of pre-timed control necessary to be periodically calibrated to dis-
play intermediate or long traffic flow model variations.

In neighboring intersections on traffic networks, entering vehicles to a glassroot
intersection are usually impacted by the policies of management of the upstream
intersections. In the transport network vehicles also move in groups. Therefore,
it is preferable to relate the pre-timed traffic signals of neighbouring intersections
such that a group of vehicles may pass several intersections without stopping. For
this purpose, offset is also used as a parameter that will affect the management of
neighboring intersections as well as other parameters.

2.1.2 Actuated control
In comparison with fixed-timed signal control, actuated traffic signal control sys-

tems are able to respond to traffic flow fluctuations. Actuated traffic control requires
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some expenses for actuated traffic controllers and vehicle detectors which must be
located next to the intersection. The actuated timing plan takes into account the
demand fluctuations sending a signal about the presence or absence of vehicles ap-
proaching or leaving the intersection. When a signal is received, the controller makes
a decision whether to extend the green phase or terminate it [9].

Two types of actuated control can be distinguished: Semi-Actuated form and
Fully Actuated form.

• In semi-actuated control vehicle detectors are placed only on insignificant
streets. The movements on main streets are called non-callable phases. There-
fore, they are activated for the entire split time every cycle, without paying
attention to the traffic demand.
The design of controllers is completed in such a way that a permitted period
is defined. During that period the controller allows the callable phases to be
served upon a detection request. The callable phases are usually calculated
to maintain a minimum green time, after which the green time can only be
increased for 10 requests and up to the maximum limit. In some cases, it is
possible that minor streets do not require all their allocated green time within
a cycle. As a result green time remains unused. Such unused green peri-
ods are automatically added to the non-callable phases (main streets).Thus,
semi-actuated traffic control is best for traffic roads where local minor streets
intersect with arterials.

• In fully-actuated control detectors are basically placed on the traffic approaches.
If there is no detected vehicle demand phases can be skipped. Similar to semi-
actuated control, callable phases run their splits with a green interval which
varies between minimum and maximum values depending on the traffic de-
mand. After reaching the minimum time for a green light phase switching
logic is run, and eventually the phase is completed in accordance with a partic-
ular criterion. Therefore, fully-actuated control is suitable for less predictable
and high volume intersections on all approaches.

2.1.3 Adaptive control
Adaptive traffic signal control systems are basically complicated. Some well

known adaptive traffic signal control systems are considered in the given section.

inSync - InSync was developed in 2008 by Rhythm Engineering. In addition to
software, the company also offers its own equipment. This makes InSync available
in 3 versions:

• InSync - use their own video cameras (up to 4 IP cameras per every intersec-
tion)
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• InSync: Tesla - existing recording devices are used - magnetometers, radars,
video cameras

• InSync: Fusion - combines devices from Rhythm Engineering and existing
city devices

Figure 2.3: Architecture of inSync [10]

Figure 2.3 shows the architecture of the InSync system. As it is shown on the dia-
gram the central module of the system is the processor. This sets it apart from other
systems. InSync uses processors at each intersection. Therefore, it does not depend
on the main server. It can be monitored from a laptop and mobile devices. The three
main elements of a standard InSync system are: an IP camera, an InSync processor
and a method for transferring data from detectors.

The system controls three parameters at the local level: clock, phase and cycle.
Globally, the system manages signals along the corridor to progress transport through
the main streets at the required speed, and also minimize stops and congestion along
the corridor. In case of camera failure, InSync uses 4 weeks data.

InSync: Tesla works with all kinds of detectors: stop line detectors, microwave
detectors, magnetometers, induction loops, dashboard cameras and radars.
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Split, Cycle and Offset Optimization Technique (SCOOT) [11] is a central-
ized adaptive real-time traffic management system. The system continuously re-
sponds to road conditions by making small changes to the signal plans. SCOOT was
advanced at the Transport Research Laboratory (TRL) in contribution with the UK
transport systems production. The SCOOT has been used in more than 200 cities and
megacities in 14 countries. countries around the world, including London, Beijing,
and Toronto.

According to TRAFFIC usage reports, SCOOT reduces vehicle latency by an
average of 12-20 %.

Current versions of SCOOT have the following features:

• traffic management

• determination of the amount of exhaust gas emissions

• prioritization of public transport

• creating corridors

• detection of an accident

The system consists of two components: the core of the system (Kernel Software)
and the software interface (ITC software), designed to interact the core of the system
with devices on the road. The system core contains a real-time traffic flow simulation
tool and three optimizers (one for each traffic light control parameter). The system’s
programming interface is specific to the device manufacturer. The second part of
the system also contains a graphical user interface for operator interaction with the
system. All data obtained as a result of the system operation is stored in the ASTRID
database. The following data is recorded in ASTRID:

• traffic flow per hour as modeled by the system

• number of cars per hour as received from sensors

• the ratio of the total delay time to the number of machines per unit of time

Other parameters are calculated.

Sydney Coordinated Adaptive Traffic System (SCATS) Sydney Coordinated
Adaptive Traffic System (SCATS) [12] is one of the earliest adaptive control systems.
It was developed in Australia in the 70s. Excrement is used and introduced at 37,000
intersections in 27 countries, including: Australia, Brazil, China, India, Iran, New
Zealand, Pakistan, Saudi Arabia, Singapore, USA, etc. It has similarity with SCOOT.
The main difference between SCATS and SCOOT is that the first one has no traffic
model or traffic signal control plan optimizer. SCATS selects optimal phase duration
and the offset among several predefined plans [13] depending on current traffic flow
conditions. SCATS controls three main parameters for controlling signals:
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1. Cycle: the total duration of all signals

2. Regulation Section: percentage of the regulation cycle distributed for every
phase

3. Offset: difference of the green signal time beginning at traffic lights

The management of traffic flows is released on 2 levels tactical and strategic.
Strategic control is released by regional computers. Which define the optimal cy-
cles, offsets and sections. Tactical control is released by local controllers. It pro-
vides the ability to switch off the green light in case of weak traffic demand or to
avoid switching it on at all, if there is no vehicle on the road. However the changes
of tactical control signals are made by regional computers. Local SCATS controllers
can work in different modes: Hurry Call, Masterlink, Flexilink, Isolated, etc. Any of
these modes can be set manually or automatically by regional computers and local
controllers. For instance, in Flexilink mode control phases are defined by local con-
trollers according to signal plan. SCATS was developed in modular configuration in
order to be able to satisfy the needs of small, medium and large cities. In the simplest
form the system is able to easily control up to 250 intersections. The enlargement of
the system is implemented by setting extra regional computers. All of the systems
have central computers for common data control and making backup of the system.
Induction loops are located on the stop lines. Also radars and video recorders can
be used. The data of geolocation of public transport is used. In Australian large
cities data from thousands of buses is gathered to analyze and give priority for public
transport.

Dynamic Programmed Intersection Control (DYPIC) Robertson and Brether-
ton [14] have created the method for optimal management called DYPIC. The DYPIC
founded on dynamic programming techniques for isolated intersections. Authors for
illustrating their method used a basic intersection. It has two conflicting directions.
Therefore the decisions of signal management consists of two actions: prolong or
stop the green signal. The given research proposed that the system has certain infor-
mation about receiving vehicles in the next few minutes. In fact it is impossible in
real con- ditions. Consequently, the given method is commonly used for theoretical
research and for evaluation of other traffic signal management techniques.

In the method the whole action space is split into N parts. Each of them longs
for 5 seconds. When each interval is finished the control system selects to prolong or
stop the green signal for the given direction. There were restrictions in the duration
of the green phase, no maximum or minimum period. The researchers defined this
type of control as a problem of dynamic programming. In particular, decision mak-
ing points meet the concept of dynamic programming. The condition on every stage
was described by the signal state and queues at the approaches. Since it was con-
sidered that certain information about approaching traffic flow exists for the action
space, the queue length in every direction could be calculated. The goal of optimiza-
tion was to define the appropriate control strategy containing actions sequence. On
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the base of queue lengths, initial signal plans and future vehicle coming data that
minimizes the total delay.

2.2 Traffic Signal Control existing methods
This segment provides foundation data with respect to a number of the methods

which have been realized within the adaptive traffic signal control optimization.

2.2.1 Multi-agent system
A multi-agent system comprises of a subjective number of intelligent agents

which are interacting in one environment. Moreover, agent of such a system must
have the following characteristics [15]:

• Autonomy: The agents must be able to act on their claim agreement, making
educated choices based on the information accessible to them.

• Decentralized: There is no one centralized agent that controls and makes de-
cisions for all other agents.

• Local view:Do not possess a global scan of the whole surroundings. Ac- tion
selection must be made based on locally accessible information. In spite of the
fact that locally accessible information may have been sent to the agent from
other distant agents.

The multi-agent frameworks are especially well suited to tackling issues which can-
not easily be illuminated by a single agent.[16] proposed the system to solve traffic
control problems in the transport network.

Fuzzy Logic (FL), Swarm Intelligence (SI), Reinforcement Learning (RL), Deep
Learning (DL) are the widely used CI techniques that consider TSC problems as
MAS [17, 18].

RL is a machine learning method that tries to figure out optimal actions by in-
teracting with an environment [19]. RL is based on states, actions, and rewards. An
RL agent chooses an action for a current state according to its decision policy; the
environment then returns a reward for the action; and based on the sequence of such
rewards the agent finally updates its decision policy.

RL algorithms may respond to dynamic changes of both current and longer term
traffic which is incorporated in the state value or state-action value functions. Yau
et al. [20] surveys many publications for TSC RL-based. It thoroughly analyzes the
parameter sets engaged by different methods and groups them as follows: transport
network parameters, RL-context parameters, performance measure metrics, and the
complexities of the used algorithms. It also highlights the following few approaches:
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• MARL [21, 22]

• Max-plus RL [23]

• Model based [24]

• Actor-Critic RL [25]

• Multistep backups RL [26]

• RL with function approximation [27]

2.2.2 Artificial Neural Network
Artificial neural networks are widely used in traffic signal management in the

transport network. Consider some of the work in this area.
The study [28] presents a model based on ANN for the traffic signal control task

on isolated intersections, where the mutual influence of the modes of operation of
traffic lights on adjacent sections of the network is not considered. In this work, the
total delay of vehicles at the intersection is minimized. For simulation purposes, the
delay flux, determined by the phase of the traffic signals, is considered as a quadratic
function of the green light duration in this phase.

Araghi, et al. [29] provide a comparison of classical ANN and fuzzy controllers
as traffic signal control systems. The authors suggest using a neural network with
one hidden layer, input vector containing the number of halting cars in each traffic
signal controller, and at the output they receive the duration of each phase. ANN is
trained using a genetic algorithm.

Castro, et al. [30] consider biologically inspired neural networks (BiNN) for in-
tersection control. In such methods, emphasis is placed on the study of dynamics,
in contrast to classical ANNs, which mainly deal with learning procedures. BiNN is
investigated on a complex intersection model. The BiNN structure is as follows: in-
put neurons describe a queue of vehicles in each lane. Output neurons correspond to
phases on stripes. All output neurons are associated with inhibitory neurons, which
suppress the activity of other output neurons. The duration of the phases is limited
by the equation describing the concept of ”immanent plasticity” of the neuron.

In the article of Spall, et al. [31] have presented a system based on ANN which
takes the information about traffic flow at the given time and gives the duration of
signals. The system is model-free, since it does not need any traffic flow model. A
feed-forward NN used as a controller. Architecture of the network is as follows:the
input layer consists of 42 neurons, and there are two hidden layers with 12 and 10
neurons respectively. Inputs included: the queue at each cycle termination for 21
traffic queues of the simulation; 11 per-cycle vehicle arrivals in the system; simula-
tion start time; and the nine outputs from the previous control solution. The output
layer contains 9 nodes for each signal split.
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The article [32] considers a deep convolutional artificial neural network for adap-
tive traffic management. For ANN training, reinforcement learning is used. In the
terminology of the underpinning learning paradigm ANN is called an agent. The
input signal to the ANN is formed from the state space proposed by the authors -
discrete state coding traffic (DTSE). The following neural network architecture is
proposed. Two neural networks are used with an identical structure, but a different
set of input signals. In the first, a binary vector describing the presence / absence
of a car on the road sections is fed to the input. In the second network a vector of
real numbers describing vehicle speed on the road sections is given to the input. The
outputs of neural networks deployed into a vector are glued to each other and with
the current state of the phases and fed to the input fully connected ANN. The output
from the ANN is an indicator vector showing the action that the agent must perform,
namely, contains the number phase to be included.

In papers [28]-[30], phase lengths are obtained at the outputs of neural networks,
and in [32] the solution is to decide which of the phases to switch.

Choi, et al. [33] present a new hybrid, synergistic approach of a multiagent sys-
tem for real-time traffic signal control of a large-scale traffic network. The transport
network management task was divided into several subproblems and each consid-
ered by an agent with fuzzy neural decision making capability. The proposed system
reduced total waiting time of vehicles by 50% and average delay by 40%.

2.2.3 Fuzzy Logic Systems
Researchers have started to apply the Fuzzy Logic Systems in traffic control prob-

lems since 1970. [34], [35] are some papers that presented the FLS controller for an
isolated intersection.

Favilla, et al. [36] applied FLS to traffic signal management on an isolated in-
tersection with two-way roads. The input that served to the fuzzy rules consists of
the number of vehicles that had already transmitted the intersection and the number
of the halting vehicles in the red signal. The result of the system is the duration of
the prolong of the green phase.

Authors [37] presenting another FLS TSC. The considered intersection has two-
way highways. The given controller has two actions: continue the green signal or
terminate it. In the articles [38], [39] a two-stage fuzzy online controller was devel-
oped.

[40] proposed a controller with genetic algorithms. Queue lengths, cars and mo-
torcycles considered as an input. Output is the duration of green signal extension.

2.3 Simulation types
The main function of simulators is to implement experiments of traffic flow mod-

eling and optimization. It can be observed how some changes in traffic flow such as
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difference in signal location, widening the streets, prohibition or permission of turns,
one-way traffic organization would affect the amount of air pollution. There are a lot
of different traffic flow simulators for estimation of transport policy, strategies and
projects.
Figure 2.4 schematically shows a simulation model of road-traffic flows.

Figure 2.4: Simulation model of traffic flow

However, any simulation model contains several models such as demand model,
model of traffic flow and transport network model. The construction features and
principles of these models are shown below. Traffic simulation is modeling of traffic
systems in order to plan the transport systems. These simulations give opportunity
to research traffic flows in a convenient and safe environment.

Traffic simulation is the modelling of vehicle traffic systems for the purpose of
planning transportation systems. These simulations offer a safe and convenient en-
vironment to investigate possible modifications to transportation systems.
Traffic simulation as a whole can be largely divided into tree approaches:

• microscopic

• macroscopic

• mesoscopic (a hybrid of the previous two)

At the macroscopic level, traffic movement is considered as a consecutive flow,
which is defined by its speed and density. It means that the participants of traffic
movement are considered as an entire flow, not separately. All values are averaged.

At the microscopic level, the speed and behavior of each traffic movement par-
ticipant is modeled separately. The attention is paid to simulation of drivers and
pedestrians behavior.

Some important modules in microscopic simulation:

• Transport network - Creation of a transport network is the process of road
system design for use in simulation. Usually it consists of defining some traffic
features such as speed restrictions, number of lanes, starting and destination
locations, connections between lanes at intersections. Some simulators need
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these specifications to be entered manually, while others are able to directly
import traffic networks from other sources or geographic information systems.

• Route generation -Route generation includes route definition for each vehicle
that will participate in the simulation. The settings of route generation differ
according to the simulator type, as each of them accepts data at different levels
and formats. Usually the route of each vehicle is set clearly. A set of road sec-
tions to be crossed, where a route is dynamically generated when the vehicle
enters the simulation. Using any of these methods it would be unreal to create
a set of routes for modeling manually. For this reason the majority of simula-
tors provide tools that automatically create vehicle routes based on specified
parameters.
Using the origin / destination (OD) approach usually includes the number of
sub-networks and amount of vehicles that start their way in the same area and
finish in the other. These numbers can be used for journey estimation in a
certain time period where routes between two points are calculated using the
route algorithm.
The coefficients of turning (Turning ratio) When the routes are determined
with the use of probability coefficient of turn for each option there must be
a mentioned turn point of the network. Those probabilities must be equal to
1 for each turn point, since each vehicle must move in one of possible di-
rections. Vehicle implementation metrics that determine how many vehicles
are included in the simulation and where they come from along with ”drain
edges” must also be specified for the network. When the vehicle route reaches
the ”edge of failure” the route ends and the vehicle is removed from the sim-
ulation. Then the route creation program defines possible vehicle routes from
origin till it reaches the edge.

• Output - The output possibilities of the simulation play an important role in de-
termining the benefit of the environment. This is due to the fact that it would
be impossible to draw any conclusions without the ability to measure the rel-
evant indicators. The basic data which is included in almost every simula-
tor is generated on the base of microscopic simulations, valuable information
about vehicles on the network, such as speed and travel time. Some simulators
give general information about the road part inside the system often including
such parameters as average speed and amount of the vehicles and their den-
sity. Some advanced simulators are able to make calculations, which include
the level of noise and air pollution. It is very important for those researchers
who are interested in developing systems minimizing pollution. Some other
simulators have features of providing output information in the form of graphs
so that many people could easily obtain and compare the results of simulation.

• Car following models - Car tracking model is a form of driver behavior widely
used in microscopic simulators of traffic movement. The attempt to duplicate
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the behavior of neighbor vehicles drivers. The use of car following models
allows observing the behavior of drivers in the traffic flow interaction. The
mesoscopic level is conditional, since mesoscopic models can be considered
less detailed analogs of microscopic ones. For example, if at the microscopic
level we can consider several types of transport, distinguish different brands of
vehicles, then at the mesoscopic level they will be represented by one class of
vehicles. The choice of simulation level strictly depends on the objectives of
the project.

The mesoscopic level is conditional, since mesoscopic models can be considered
less detailed analogs of microscopic ones. For example, if at the microscopic level
we can consider several types of transport, distinguish different brands of vehicles,
then at the mesoscopic level they will be represented by one class of vehicles. The
choice of simulation level strictly depends on the objectives of the project.

In the given work Simulator DLR SUMO [41] was chosen as an environment for
experiments.

SUMO is a simulator for microscopic modeling of traffic movement. Each vehi-
cle is defined by its own ID, departure time and the movement route in the network.
Simulation is discrete in time with 1 second default increment. It is spatially con-
tinuous. The position of each vehicle is determined by the lane where the vehicle is
located and the distance from the beginning of that lane. The speed of each vehicle
is calculated by using the model of following cars. SUMO uses the car models de-
veloped by Stefan Kraus [8]. The change of the lane is released by using the model
developed while implementing SUMO.

Benefits of the SUMO:

• Full tool for traffic flow modeling

• demand generation

• multimodal modeling

• emission modeling

• simulation modeling

• interactive interaction

• different input sources: destination matrices, traffic counts, etc.

• high-performance modeling

• “remote control” interface (TraCI) for adapting online modeling

• V2X - vehicle and vehicle to infrastructure
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• evaluation of the developed traffic light programs

• “Traffic Assignment” on a microscopic basis

• evaluation of traffic surveillance systems

• modeling of road traffic in large cities

• Car-After and Lane-Change API

• Personal simulation of intermodal traffic

• Emission and noise modeling.
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Chapter 3

Overview of the methodologies
In this section basics of Artificial Neural Network (ANN) and Reinforcement

Learning (RL),formulation of the given problem within its framework are presented.

3.1 Reinforcement Learning (RL)
Reinforcement learning (RL) [19] studies how to teach an agent to interact ef-

ficiently with the environment . An agent is the learner which is able to sense the
state of its environment and take actions that affect the state. On each consecutive
interaction the environment responds by sending a numerical reward signal to the
agent which indicates how good the action was. The agent must have a goal relating
to the state of the environment. The purpose of reinforcement learning is to make
the agent learn the action selection rule which ensures the maximum possible total
reward the agent receives over the long run so as to achieve the goal.

Figure 3.1: Reinforcement Learning

The agent-environment interaction is continual and occurs over time t as follows
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(see Figure 3.1):

St −→
At

(Rt+1,St+1), (3.1)

where St ∈S and St+1 ∈S are the states of the environment at the previous and
current times respectively; At ∈ A is the action taken, and Rt+1 ∈R is the reward
value obtained. If spaces S , A and R are all finite, there is a discrete probability
distribution for the random variables St and Rt dependent only on the preceding state
and action:

p(s′,r|s,a) .
= Pr{St = s′,Rt = r | St−1 = s,At−1 = a} (3.2)

These conditional probabilities constitute the model of an environment and com-
pletely characterize its dynamics. The algorithms that rely on the knowledge of the
model are called model-based; those which do not assume it are called model-free.

The idea of a total cumulative reward is formalized by means of the discounted
return at time t:

Gt
.
= Rt+1 + γRt+2 + γ

2Rt+3 + . . . , (3.3)

where 0≤ γ ≤ 1 is the discount factor. The agent’s action selection rule is called the
policy and is also a probability distribution:

π(a|s) .
= Pr{At = a | St = s} (3.4)

Finding the optimal policy that maximizes the expected return is the objective for
learning.

While rewards show what is good in an immediate sense, the value functions
determine the long-term desirability of the environmental states taking into consid-
eration the states that are likely to follow under the given policy, and the rewards
available in those states [19]. The state-value function vπ(s) for policy π evaluated
at state s ∈S is the return value which the agent can expect to obtain starting from
that state and following policy π thereafter:

vπ(s)
.
= Eπ [Gt | St = s]
= Eπ [Rt+1 + γGt+1 | St = s]
= Eπ [Rt+1 + γvπ(St+1) | St = s] (3.5)
= ∑

a
π(a|s)∑

s′,r
p(s′,r|s,a)[r+ γvπ(s′)] (3.6)

Similarly, the action-value function qπ(s,a) for policy π evaluated at state s ∈S
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and action a ∈A is defined as:

qπ(s,a)
.
= Eπ [Gt | St = s,At = a]
= Eπ [Rt+1 + γGt+1 | St = s,At = a]
= Eπ [Rt+1 + γvπ(St+1) | St = s,At = a]
= ∑

s′,r
p(s′,r|s,a)[r+ γvπ(s′)] (3.7)

Notice that the formula (3.7) gives a way to express qπ(s,a) in terms of vπ(s). It can
also be done the other way around:

vπ(s) = ∑
a

π(a|s)qπ(s,a) (3.8)

Intuitively, the value vπ(s) measures how good it is for the agent to be in state s,
whereas the value qπ(s,a) indicates how good it is to perform action a in state s.

If we define a partial ordering on the set of all policies as

π ≥ π
′ if vπ(s)≥ vπ ′(s) ∀s ∈S , (3.9)

then there is at least one policy that is better than or equal to all other policies — the
optimal policy. Let us denote by π∗ all the optimal policies. They share the same
optimal state-value function v∗

v∗(s)
.
= max

π
vπ(s), ∀s ∈S (3.10)

as well as the optimal action-value function q∗:

q∗(s,a)
.
= max

π
qπ(s,a), ∀s ∈S ,∀a ∈A (3.11)

The optimal value functions, v∗ and q∗, are related to one another by the Bellman
optimality equation:

v∗(s) = max
a∈A

q∗(s,a), (3.12)

which comes from the fact that if we know q∗ to be optimal, then the optimal value
of a state is the expected return for the best action from that state.

The deterministic greedy action selection policy with respect to the optimal action-
value function is always one of the optimal policies:

π∗(a|s) =

{
1 a = argmaxa q∗(s,a)
0 otherwise

(3.13)

The reinforcement learning methods aim at finding plausible estimates of the
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optimal value functions. The agent can adopt the greedy policy with respect to these
estimates and it will be nearly optimal. However, if the agent follows a completely
greedy policy all the time with respect to the estimates at each time step, it will
exploit the current knowledge about the states and actions it has observed, but may
fail to explore new, and possibly better, action choices. This is called the exploration-
exploitation dilemma. On-policy methods estimate the value functions of a policy
while simultaneously using it for controlling the agent’s behavior [19, Sec 5.7]. In
off-policy methods there are two different policies. The policy used to generate the
agent’s behavior is called the behavior policy b, and it may in fact be unrelated to
the policy that is evaluated and improved, called the target policy π . An advantage
of this separation is that the target policy may be deterministic (e.g. greedy), while
the behavior policy controls the agent so that it continues to explore new action
selections.

3.1.1 Q-learning and SARSA
There are numerous basic approaches to solve the reinforcement learning task. If

the environment’s dynamics is known, the methods of dynamic programming (DP)
[19, Chap 4] are employed which directly solve for v∗ by the method of successive
approximations for the system of linear equations defined by (3.6). If the task is
episodic [19, Sec 3.3], the Monte Carlo methods are frequently used which involve
estimating v∗ by averaging sample returns obtained at the end of each successive
episode [19, Chap 5]. However, neither of these approaches is suitable to our task
per se, since the model of the environment is not known beforehand, and the task is
not episodic.

The temporal-difference learning (TD) is a combination of both the dynamic
programming and Monte Carlo methods. Like DP, TD methods update estimates
of the value functions obtained in turn from other learned estimates. However, in
contrast to DP, TD assumes no predefined model of the environment whatsoever.
Like Monte Carlo, TD methods can learn directly from raw experience. However, in
contrast to Monte Carlo, the TD approach updates the estimates in the online fashion,
meaning that it does not wait until the end of an episode, but rather does this on each
time step (i.e. bootstraps).

The TD method estimates the true expected value (3.5) by averaging the value of
Rt+1 + γvπ(St+1) at each time step. However, the value vπ(St+1) is not known, so
its current estimate V (St+1) is used instead. Upon transition to a new state St+1 and
receiving Rt+1, the TD methods make the following update:

V (St)←V (St)+α [Rt+1 + γV (St+1)−V (St)] (3.14)

Another perspective on the above formula is:

V (St)←V (St)+αδt (3.15)
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δt
.
= Target−Estimate .

= Rt+1 + γV (St+1)−V (St) (3.16)

Thus, the update shifts the current estimate in the direction of the error between the
target at time t and the current estimate of the value function. This error δt is called
the TD error. Notice that the TD error at each time is the error in the estimate made
at that time. Because the TD error depends on the next state and the next reward, it
is not actually available until one time step later. The update formula (3.14) follows
the following general rule that occurs frequently throughout reinforcement learning:

NewEstimate← OldEstimate+StepSize [Target−OldEstimate] (3.17)

This general update rule can be treated as averaging of the old estimate and the target
with the constant parameter StepSize = α that defines the extent to which the new
target affects the average.

The majority of TD methods estimate q∗ instead of v∗, since we cannot construct
a policy derived from the estimate of v∗ without the model of the environment. The
estimation of q∗ is done using essentially the same TD update (3.14) described above.
One of the on-policy TD methods is SARSA [19, Sec 6.4], in which the target and
behavior policies are the same and are both derived from the current action-value
estimate Q(St ,a). For instance, the ε-greedy policy can be adopted which is defined
as follows:

π(a|s) =

{
ε a is a random action
1− ε a = argmaxa q∗(s,a)

(3.18)

The update rule for SARSA is:

Q(St ,At)← Q(St ,At)+α [Rt+1 + γQ(St+1,At+1)−Q(St ,At)] , (3.19)

where At+1 is selected according to the current policy.
One of the off-policy TD algorithms is Q-learning [19, Sec 6.5]. The target

policy for Q-learning is the greedy policy, whereas the behavior policy may be any
policy derived from Q which ensures exploration, i.e. all the state-action pairs are
continually visited and updated. The update rule for Q-learning appears as follows:

Q(St ,At)← Q(St ,At)+α

[
Rt+1 + γ max

a
Q(St+1,a)−Q(St ,At)

]
(3.20)

If the state and action spaces are finite, the function Q can be represented as a table.

3.1.2 Q-network
In the Q-network algorithm the estimate of the true action-value function is rep-

resented not as a table, but rather as a parametrized continuous function — the neural
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network with a shallow architecture. That is,

q∗(s,a)≈ q̂(s,a,w), (3.21)

where q̂(s,a,w) represents the value of the neuron corresponding to the action a
in the output of the neural network evaluated at state s. The neural network is
parametrized by the set of weight matrices w .

= {w(1),w(2), . . . ,w(L−1)}, where L
is the total number of layers in the neural network. The matrix w(k) for k = 1,L−1
defines the transition from the kth to the (k+1)th layer.

In order to be able to train the neural network, we need to define the cost function.
The algorithm should adjust the weight matrices w so as to reduce the cost function
as much as possible. The natural way to define a cost function which is consistent
with our goal of approximating the optimal action-value function q∗ is:

J(w) .
=

1
2 ∑

s∈S ,a∈A
(q∗(s,a)− q̂(s,a,w))2 (3.22)

However, the true values of q∗(s,a) in the sum above are not known, so this cost
function is inappropriate. To remedy this state of affairs, the temporal-difference
learning comes in.

The SQN algorithm proceeds in the online manner: at each time step t it makes
a TD estimate Ut(St ,At) to the target value q∗(St ,At) as follows:

Ut(St ,At)
.
= Rt+1 + γ max

a′∈A
q̂(St+1,a′,wt) (3.23)

Afterwards, we define the cost function as

Jt(wt)
.
=

1
2
(Ut(St ,At)− q̂(St ,At ,wt))

2 , (3.24)

which involves the difference between the new and current estimates of the action-
value function, with the latter produced by the neural network with the weights at
time t.

Gradient descent is used to update the weights of the neural network by a small
amount along the anti gradient of the cost function (3.24). Note that the cost func-
tion (3.24) does not involve summation over all the states and actions, but rather it
uses only state St and action At from the current time step. These were provided
stochastically by the environment. That is the reason why this is the stochastic gra-
dient descent: it uses the cost function involving a training example which is chosen
stochastically, and seeks to reduce error just on it.

Let us compute the gradient of the cost function (3.24):

∇Jt(wt) = (Ut(St ,At)− q̂(St ,At ,wt))∇wt q̂(St ,At ,wt) (3.25)
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Afterwards, the algorithm updates the weights wt of the neural network as follows:

wt+1
.
= wt−α∇Jt(wt), (3.26)

where α is the learning rate.
Note also that (3.25) is not the true gradient of (3.24), since in computing it we

did not take into account the fact that the value Ut(St ,At) is dependent on the network
weights wt . After Ut(St ,At) has been evaluated, it is treated to be constant. This is
why (3.26) is called semi-gradient descent.

In general, the gradient ∇wt q̂(St ,At ,wt) on the right-hand side of (3.25) is not
easy to compute for the neural networks having one or more hidden layers, therefore
the whole ∇Jt(wt) is computed by means of the backpropagation algorithm. The
error δt is backpropagated at each time step t which is defined as follows:

δt
.
=Ut(St ,At)− q̂(St ,At ,wt) (3.27)

3.1.3 Average Reward Network (ARN)
Another approach of training the neural network by learning a numerical prefer-

ence for each action a to be selected in state s, which we denote H(a,s,wt), where wt
is again a set of weight matrices of the neural network. You can think of H(·,s,wt)
as a vector of size k .

= |A | produced at the output layer of the neural network when
the activation function has not yet been applied to it. The larger the preference of an
action, the more favorable it is to be taken; however, the preference has no interpre-
tation in terms of reward. Only the relative preference of one action over another is
important; if we add 1000 to all the preferences, there is no effect on the action prob-
abilities, which are determined according to the softmax (or Boltzmann) distribution
as follows:

π(a,s,wt)
.
=

eH(a,s,wt)

∑
k
b=1 eH(b,s,wt)

, (3.28)

The parametrized probability distribution π(·,s,wt) constitutes the current stochastic
action selection policy.

Next, we need to maintain the average reward R∗t (s) at time t for each state s∈S
updated by the following recurrent rule:

R∗t (s)
.
= R∗t−1(s)+α

(
Rt(s)−R∗t−1(s)

)
(3.29)

R∗0(s)
.
= 0 (3.30)

Note that the above update follows the general rule (17), and here we assume that
the state space S is finite.
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Upon selecting action At in state St and receiving reward Rt , the average reward
R∗t (St) is updated, and the error δt ∈ Rk is computed according to (3.31). The term
R∗t (St) serves as a baseline with which the current immediate reward is compared. If
the reward is higher than the baseline, then the probability of taking At in the future
is increased; and if the reward is below baseline, then the probability is decreased.
The non-selected actions move in the opposite direction.

δt(At)
.
=−(Rt−R∗t (St))(1−π(At ,St ,wt)),

δt(a)
.
= (Rt−R∗t (St))π(a,St ,wt) for all a 6= At (3.31)

Afterwards, the error δt is backpropagated through the network using the backprop-
agation algorithm, and the weight matrices wt are updated.

We name the algorithm described in this section as Average Reward Network
(ARN). ARN is an online, model-free and on-policy method. The error defined in
(3.31) is analogous to the update rule (2.10) in [19, Sec 2.8]. The distinguishing
feature of ARN is that, unlike SQN, it learns solely by immediate rewards.

3.1.4 A model based solution
The proposed method requires a model of the environment. The model learns the

transition function T (s,a,s′)) from the pair of current state s and action a to the next
state s′. It is a conditional probability, which is derived from the history statistics:

P(s′|(s,a)) = #(s,a,s′)
#(s,a)

For the Q-value update based on the Bellman equation:

Q(s,a) = R(s,a)+ γ ∑
s′
(T (s,a,s′)max

a′
Q(s′,a′)) (3.32)

3.2 Artificial Neural Network (ANN)
ANN is a network that consists of many simple processors that interconnect be-

tween each other. These units are called neurons. Neurons transmit signals to each
other by the connections that have different strength values. This network param-
eter is named as a weight. Neurons operate with their own local data and perform
calculation in parallel [42].

z j = σ j +
n

∑
i=1

ai jxi (3.33)

where z j is the output, ai j are the weights, xi is the input, σ is the bias.
The main advantage of the ANN is the ability to learn without analytical knowl-

edge about the environment. Learning process is the setting of the weights such that
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the model is able to give the right solutions. The weights are adjusted based on the
data provided by the neural network. Finally, the network can predict the behaviour
of the system. The data that is provided for the learning process is called training
data. The data that is used for evaluation of the model is called test data. Overall
data is merged as a dataset.

Three types of learning in ANN are distinguished: supervised, unsupervised and
semi supervised. Supervised learning requires input data and desired output or target
(label). Since the correct answers are known, the ANN’s output is compared with the
targets and the error can be calculated. Based on this, the weights are updated, which
lead to minimizing errors. This is how the model is trained in supervised learning
[43].

In the unsupervised learning process data is not annotated, which means that
there are no desired outputs. In this method, the hidden features and characteristics
of the given data are studied and divided into groups based on certain characteristics.
The network self-organize the input data.

In a semi supervised learning approach some parts of data has a target, some
none. Practical applications of NNs most often deal with supervised learning as in
this thesis.

The success in usage of ANN depends on provided data. A large dataset is re-
quired for the training process. ANN is like a function approximator that constructs
dependencies between input and output. The rightness of the result directly depends
on data quality. There are some difficulties in ANN: too many parameters to ad-
just, difficult to train, since slow convergence, local minima and design of the net-
work itself. Architecture definition (number of layers, hidden units) requires expert
knowledge in the given scope.

3.2.1 ANN Architecture
The group of neurons that process in one unit time join into one layer [44]. There

exist three types of layer: input, output and hidden. The first two are compulsory,
while the third is optional. Therefore, the architecture of ANN is defined as the
number of layers and number of neurons in each layer (See Figure 3.2).

Input is the first layer that accepts the provided data. The size of this layer de-
pends on the feature vector of the input sample. Some ANN configurations add one
node for bias.

Output is the last layer that presents the final result. The number of neurons on
this layer depends on the problem that is considered. In classification problems, the
number of classes in the output set determines the number of neurons. In a regression
problem, there is a single node that is predicted.

Hidden is a middle layer between input and output. It adds flexibility to the
network. If the input data is linearly separable then there is no need for a hidden
layer. If need more complex connections for data approximation hidden layers are
added. We need to add several hidden layers to make network more flexible. There
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Figure 3.2: ANN architecture [45].

is no strong rule to find how many hidden units are needed to approximate any given
function. Usually, the number of neurons is selected by experimental way. If the
network is overfitting during the training and testing process, the number of neurons
should decrease.

3.2.2 Activation functions
Activation functions conduct the data through the specific function that converts

it to needed format.

z j = f (σ j +
n

∑
i=1

ai jxi) (3.34)

where z j is the output, f is the activation function. ANN uses 2 different activation
functions in one time: hidden layer activation function and output layer activation
function. These two have different goals. Activation function of hidden neurons
adds nonlinearity to the network. Activation function of output neurons depends on
target value.

Examples of activation functions [46]:

Linear:

f (x) = x (3.35)
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Hyperbolic:

f (x) = tanh(x) (3.36)

Sigmoid:

f (x) = (1+ exp−x)−1 (3.37)

Softmax:

f (xi) =
expxi

∑ j x j
(3.38)

Activation functions for different tasks:

• Sigmoid : if problem requires binary output;

• Softmax: classification targets;

• Tanh: continuous value output in range -1 and 1;

• Linear: unlimited continuous value output.

3.2.3 Backpropogation Algorithm
ANN is often use backpropogation algorithm [47] to training process. The weights

are adjusted so that difference between output o and target t value is minimized. Gra-
dient descent is used to minimize the error. The cost function C is calculated for each
sample by Euclidian distance:

C =
1
2
||o− t||2 (3.39)

where o = (o1,o2, ...,on) , t = (t1, t2, ..., tn).
Weights w are updated by gradient descent algorithm:

w(t +1) = w(t)−η
∂E
∂w

(3.40)

where η is learning rate. It is free parameter, that identifies step size and affect to
learning speed.

Weights between hidden and output layers d are updated as following:
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d jk(t +1) = d jk(t)−η
∂C(t)
∂d jk

= (3.41)

= d jk(t)−η
∂C(t)
∂o jk

∂o(t)
∂d jk

= (3.42)

= d jk(t)−η(o jk− tk)z j(t) (3.43)

where cost function:

C =
1
2
||o− t||2 = (3.44)

=
1
2

p

∑
k=1

(ok− tk)2 = (3.45)

=
1
2

p

∑
k=1

h

∑
j=1

(d jkz j− tk)2 = (3.46)

For update weigths between input and hidden layer a the cost function will be
modified:

C =
1
2
||o− t||2 = (3.47)

=
1
2

p

∑
k=1

(ok− tk)2 = (3.48)

=
1
2

p

∑
k=1

h

∑
j=1

(d jkz j− tk)2 = (3.49)

=
1
2

p

∑
k=1

(
h

∑
j=1

(d jk f (
n

∑
i=1

ai jxi)− tk)2 = (3.50)

Update rule for weights a:

ai j(t +1) = ai j(t)−η
∂C(t)
∂ai j

= (3.51)

= ai j(t)−η(
p

∑
k=1

∂C(t)
∂ok(t)

∂o(t)
∂ z j(t)

)
∂ z j(t)
∂ai j

= (3.52)

= ai j(t)−η(
p

∑
k=1

(ok(t)− tk)d jk(t))z j(t)(1− z j(t))xi(t). (3.53)

In the above formula, sigmoid function is considered as the activation function.
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Chapter 4

Traffic Signal Control using
Reinforcement Learning (RL)

This chapter presents an online model-free adaptive traffic signal controller for an
isolated intersection. The problem is formulated as a Reinforcement Learning (RL)
task. We base our solution on the Q-learning algorithm. In contrast with other stud-
ies in the field, we use the queue length rather than the average delay as a measure
of performance. Also, the number of queuing vehicles in non-conflicting directions
is aggregated to represent a state. Then, instead of predefined phase splits or direct
switching, the duration of phases is updated by a small amount of time. Finally, we
include the queue reduction and equilibrium terms in the equation of an immediate
reward. The performance of the proposed method is compared with an optimal sym-
metric and far-from-optimal asymmetric fixed signal plan. The experimental results
show that the proposed method performs almost as good as an optimal one.

4.1 Q-learning-Q-table
In recent years significant efforts are made in order to utilize Computational Intel-

ligence (CI) techniques in the traffic signal control problem. Reinforcement Learning
(RL) is one of them.

The main focus in Traffic Signal Control (TSC) systems has moved as following:

• from traffic flow model-based methods to traffic flow model-free methods

• from pure Fuzzy Logic (FL), Neural Network (NN) [29], and Genetic Algo-
rithm (GA) solutions to RL solutions

• from model-based RL [48] to model-free RL [49, 50]

• from single-objective to multiple-objective RL [51, 21]

• from RL to RL with function approximation [52] and global optimization tech-
niques.
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Additionally, different agent types [52, 53] as well as agent collaboration tech-
niques [54, 55, 56] had been investigated. The most recent trend is to consider RL in
combination with Swarm Intelligence (SI) [57, 58] Therefore, the researchers mostly
work on decentralized TSC systems based on collaboratively operating and self-
organized multi-type agents, which have no prior knowledge of the environment.

Our aim is to create an easy to deploy system of adaptive traffic signal control
that is based on one of the well-known methods and that can be integrated without
difficulties into the current local traffic network with the minimal change of the latter.
Such a solution is an off-policy, one-step, tabular, model-free Temporal Difference
(TD) Q-learning method. Our approach is closely related to the papers by Abdoos et
al. [49] and Araghi et al. [50].

As in [49, 50], we formally describe the problem as an infinite horizon Markov
Decision Process (MDP) with a non-stationary unknown environment. In other
words, we define finite sets of states and actions and use ε-greedy policy to choose
actions based on state signals received from the environment. We solve the problem
using one of the Reinforcement Learning (RL) algorithms, namely Q-learning [59].

Compared to [49, 50], first, we use the queue length rather than the average delay
as a measure of performance. Second, we aggregate the number of queuing vehicles
in non-conflicting directions to represent a state. Third, instead of predefined phase
splits, we update the duration of phases by a small amount of time. Finally, we
include the queue reduction and equilibrium terms in the equation of immediate re-
ward.

4.1.1 Q-learning
According to [19], today the most widely used RL methods are: Q-learing,

SARSA, Actor-Critic, and R-learning. SARSA and actor-critic methods are on-
policy methods, while Q-learning and R-learning are off-policy methods. Due to
their great simplicity, they can interact with the environment on-line with a minimal
amount of computation. On-policy and off-policy methods mainly differ in the value
function and policy update, which mostly influence the convergence rate of the pro-
cess. Since all the methods have been proven to converge to an optimal policy, in our
context those differences are subtle. Therefore, any of the aforementioned methods
may be equally applied to the problem.

We implement an off-policy, one-step, tabular, model-free Temporal Difference
(TD) Q-learning method:

Q(st ,at)← Q(st ,at)+α

[
rt+1 + γ max

a
Q(st+1,a)−Q(st ,at)

]
(4.1)

where Q(st ,at) is an action-value of action at taken at state st , st+1 is the next state,
0 < α ≤ 1 is a constant step-size parameter, rt+1 is an immediate reward of action at
at state st , and 0 < γ ≤ 1 is a discount factor. See [59, 19] for more details.
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4.1.2 The proposed method
The proposed solution for a traffic signal controller needs neither a traffic flow

model nor a model of the environment. Additionally, it can be almost painlessly used
and deployed on a traffic network of any size.

In this context, a signal controller of an intersection is considered as an agent
and the intersection itself as its environment. Given a non-static environment, during
each cycle the agent first receives a state signal, then it performs an action, and,
finally, it gets a reward for the action. The objective is to minimize the queue length,
keeping the balance between the conflicting directions.

The state signal represents the aggregated number of queuing vehicles in non-
conflicting directions. The links D10 and D30 are considered to have non-conflicting
directions, so do D20 and D40 (Figure 4.1). Therefore, each state has two compo-
nents: the queue length in NS (North-South and South-North) and the queue length
in WE (West-East and East-West) directions. We also categorize both components of
a state as L (Low), M (Medium), and H (High), according to the level of congestion
in a particular direction. Hence, there is a discrete state space with 32 = 9 states: LL,
LM, ML, MM, MH, HM, LH, HL, HH.

Figure 4.1: Test transport network.

In Table 4.1 n denotes the aggregated number of queuing vehicles in a direction.
We uniformly distribute the queue length among the categories. However, an impact
of any other distribution on the system has not been investigated, because in future
work we consider replacing the discrete state space by a continuous analog.

During each cycle the agent can choose one of the three actions: first, do nothing,
i.e a0 = (0,0); second, extend the NS green phase and accordingly shorten the WE
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Table 4.1: Initialization of the categories

Category Short Range
Low L 0≤ n≤ 30
Medium M 30 < n≤ 60
High H 60 < n≤ 90

green phase, i.e., a1 = (+dt,−dt); third, extend the WE green phase and shorten
the NS one, i.e., a2 = (−dt,+dt). Those actions change the signal plan of the next
cycle. Here dt is a constant extension parameter.

After the agent performs an action the environment gives an immediate reward.
We represent the immediate reward as a function R(s,s’) of the previous and current
states:

R = w1

equilibrium term︷ ︸︸ ︷(
|NS−WE|− |NS′−WE ′|

)
+

w2
(
(NS+WE)− (NS′+WE ′)

)︸ ︷︷ ︸
queue reduction term

(4.2)

where 0 ≤ w1 ≤ 1 and 0 ≤ w2 ≤ 1 are control weights, s = [NS,WE] and s′ =
[NS′,WE ′] are previous and current states.

In 4.2 there are two terms. The first is an equilibrium term which tries to keep the
congestion in both directions in balance, and the second is a queue reduction term
which serves to reduce the congestion in general.

The ε-greedy policy is taken as the behavioral policy of action selections. This
means that we choose an action with the maximal estimated value with probability
1− ε , and choose a random action with probability ε .

4.1.3 Experiments
In order to evaluate the performance of our traffic light controller and test dif-

ferent scenarios we use one of the microscopic traffic simulation software [?]. We
built an isolated four-way intersection with two-lane links and two-phase signal plan
(Figure 4.1). Technically speaking, the intersection has green, red and amber phases.
We modify only green and red phases, while the amber remains constant. The cycle
length is fixed(Eq. 4.3):

tc = tg + ty + tr (4.3)

The test intersection is Right-Hand Traffic (RHT) intersection. From each link a
vehicle can go straight, turn right or left. Those moves are considered as non-
conflicting moves. A vehicle may turn right from the rightmost lane, and left from
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the leftmost one. All vehicles turning left clear the intersection during the amber
light.

We set average lengths of links and vehicles to 100 meters and 5 meters re-
spectively. The problem is simplified by excluding the following: U-turns, public
transport, pedestrians, traffic rules violation, traffic road accidents, and parking. It is
also assumed that the input data are available on request.

For the given intersection a set of random trips with a uniform distribution is
generated. The generated demand model may be unrealistic, but it is good enough
for the comparison of the performance of different methods.

The agent-environment interaction is an infinite horizon process (which does not
naturally break into episodic tasks and continues without limits). Therefore, we let
the simulation run for ≈ 28 hours with the following structure of the signal plan:

1. Green (NS) - Red (WE)

2. Amber

3. Green (WE) - Red (NS)

4. Amber

We conduct three main experiments with the same uniform demand model on the
given test intersection. Since the generated demand model has a uniform distribution,
the optimal signal plan should have more or less equal green phase duration in all
directions. Our first experiment uses exactly these equal green phase durations, i.e.,
it exploits the fixed symmetric signal plan. Our second experiment uses the fixed
signal plan which is far from optimal. The signal plan is fixed to be 24 seconds
for the NS green light and 42 seconds for the WE green light. Finally, our third
experiment starts from the same setting as in the second experiment, but it uses the
proposed method to react to the demand changes. For the last experiment, in order to
prevent a negative phase duration, we set a maximal and a minimal phase duration.
Additionally, we penalize any unfeasible action by some negative reward.

For all three experiments the amber light is set to 12 seconds and the cycle length
sums up to 90 seconds. For the proposed solution, we set ε = 0.1, γ = 0.6, α = 0.3,
dt = 3 seconds, w1 = w2 = 1. The Q-table is initialized as the zero matrix.

4.1.4 Results and evaluations
The first experiment shows no traffic congestion. The phase split perfectly un-

loads the intersection in both directions (Figure 4.2, top). The most frequently oc-
curring state of the experiment is LL (Figure 4.3, blue bars).

By contrast, in the second experiment there are huge queues on the corresponding
links due to considerably less amount of time allocated to the green light in the NS
direction. The Figure 4.2 (middle) shows that the fixed asymmetric signal plan with
the specified demand definition on the given intersection does not work properly.
The dominating state is HL (Figure 4.3, cyan bars).
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Figure 4.2: Number of halting vehicles in two conflicting directions for the symmet-
ric fixed signal plan(top), fixed asymmetric signal plan(middle) and adaptive con-
troller(bottom).
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Figure 4.3: Quantitative evaluation of state occurrence for all three experiments.

In the third experiment we investigate our approach. The initial phase split of
the adaptive controller has the same setting as in the second experiment. According
to Figure 4.2 (bottom), the controller reaches a near-optimal policy within the first
≈ 150 cycles.As in the first experiment, LL is the most frequent state (Figure 4.3,
yellow bars).

Figure 4.4: Quantitative evaluation of state-action pair occurrence for the adaptive
controller.

Additionally, we provide state-action statistics, which show how often the actions
have been taken at a particular state (Figure 4.4), and the reward function evolution
(Figure 4.5).

As shown in Figure 4.4, at the LL state the adaptive controller almost never
changes the signal plan; at the LM state the controller decreases the green light in
the NS direction and increases it in the WE direction; at the ML state it proceeds in
the opposite way. All other states are not visited frequently enough.
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Figure 4.5: Evolution of the adaptive controller’s reward function.

The reward function is expected to slowly approach zero with time span. Specifi-
cally, when an optimal phase split is found, further changes of phase durations would
not improve the subsequent states and the immediate rewards become small. The
Figure 4.5 shows that the immediate rewards oscillate around zero and decrease.

In this chapter we propose an adaptive model-free signal controller system based
on a multi-objective one-step Q-learning algorithm.

We compared the performance of our solution to the ground truth phase split. In
practice, however, improper phase splits are common issues. Therefore, we exam-
ined our solution against this non-optimal intersection setting.

The results of the experiments have shown that the adaptive method approached
a near-optimal performance.It is possible to replace the discrete state space by a
continuous analog and apply this method for a multi-intersection network.

4.1.5 Extension of the state and action spaces
As a continuation of the previous experiments we apply the proposed method

with an extended action and state spaces. The action space consists of the following
9 elements:

1. [−dt,−dt]

2. [−dt,0]

3. [−dt,+dt]

4. [0,−dt]

5. [0,0]

6. [0,+dt]
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Table 4.2: Initialization of the state category

Category Short Range
Extra Low EL 0≤ n≤ 16
Low L 17 < n≤ 32
Medium M 33 < n≤ 48
High H 49 < n≤ 64
Extra High EH 65 < n≤ 80

7. [+dt,−dt]

8. [+dt,0]

9. [+dt,+dt]

where dt ∈ N . Note that the cycle length is not fixed anymore. Each component of
the action is green phase duration in the NS and WE directions.

Each state has the following components:

1. Vehicle approaching the intersection from the north and the south

2. Vehicle crossed the intersection from the north and the south

3. Vehicle approaching the intersection from the west and the east

4. Vehicle crossed the intersection from the west and the east

State : (D10+D30)(D01+D03)(D20+D40)(D02+D04) (see Figure 4.1)

Each state elements component is categorized as shown in the Table 4.2:
The state space consists of 625 elements.

We used the following continuous reward formula:

St = (NS,WE)→ St+1 = (NS′,WE ′), (4.4)

the reward signal is defined as follows:

R(St ,St+1)
.
= β

equilibrium term︷ ︸︸ ︷(
|NS−WE|− |NS′−WE ′|

)
+

+(1−β )
(
NS+WE−

(
NS′+WE ′

))︸ ︷︷ ︸
queue reduction term

, (4.5)
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where β ∈ [0,1] is control weight;

NS := NS+αWEcrossed; (4.6)

WE :=WE +αNScrossed; (4.7)

NS′ := NS′+αWE ′crossed; (4.8)

WE ′ :=WE ′+αNS′crossed; (4.9)

Figure 4.6: Quantitative evaluation of the most state occurrence for experiments

We provided state statistics of the most occured states (See Figure 4.6). From the
results we can see that states consist of only EL,L and M components.

From the state-action pair statistics (see Figure 4.7) it can be concluded that ac-
tions are selected in an optimal way. The number of halting vehicles in two directions
in the most cases converges (see Figure 4.8), and the intersection is in the equilibrium
state.

The reward function is expected to slowly approach zero with time span. The
Figure. 4.9 shows that the immediate rewards converge to zero.

The results of the experiments have shown that the adaptive method approaches
a near-optimal performance when we extend our discrete state space and try to ap-
proach to continuous analog. Also by changing the action space we achieved the
flexibility of the cycle length. Considering directions separating to enter and cross
the intersection. Since, our reward formula is also modified.
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Figure 4.7: Quantitative evaluation of state-action pair occurrence

Figure 4.8: Number of halting vehicles in two conflicting directions

4.2 DQN
In the given section, one of the solutions - RL with action-value approximation

(Deep Q-Network, DQN) considered to tackle the problem of traffic flow control
on an isolated intersection. The approach that presented in the previous section has
a serious limitation. It can not easily incorporate data from different sources. For
instance, week day, day time, temperature, season, and etc. The action-value func-
tion approximation by a neural network overcomes the issue. After that, we decided
to change the action space such that instead of adding and subtraction from green
phases dt we directly set their duration. In other words, new action space consists
of a set of phase durations. That does not change the way how the system works,
but changes conceptually means a lot. To be more specific, now it implicitly takes
into account the previous green phase durations since the information about lengths
of the phases directly incorporated in the action itself.
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Figure 4.9: Evolution of the reward function.

The limitations of our immediate reward formula were relieved and the updated
formula was proposed. Therefore, each of the four directions is considered sepa-
rately.

4.2.1 Problem Formulation
The aim of the given work is to build an intelligent traffic signal controller for an

isolated intersection using RL approach. The model trained using Deep Q-learning
(DQN). Traffic signal controllers are considered as an agent, intersection as an envi-
ronment. The goal of the agent is to reduce the queue length at the intersection and
keep the balance between the all directions. Since the environment is non-stationary,
traffic controllers should be adaptive and be able to adjust to the dynamically chang-
ing traffic road situation. DQN is adopted to enlarge state space and be suitable to be
extended to a transport network of any size.

State space

The state space element represents the number of waiting vehicles in each direc-
tion and green phase signal for non-conflicting directions. The links D10 and D30
are considered to have non-conflicting directions, so do D20 and D40 (See Figure
2). Consequently, at each time step the state signal is represented by a 6-vector of
values as follows:

NS .
= D10 (4.10)
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EW .
= D20 (4.11)

SN .
= D30 (4.12)

WE .
= D40 (4.13)

grPhaseNS .
= green phase duration for D10 and D30 (4.14)

grPhaseWE .
= green phase duration for D20 and D40 (4.15)

S .
= (NS,SN,WE,EW,grPhaseNS,grPhaseWE) (4.16)

Figure 4.10: The test transport network

Thus, the state space S in this setting is unbounded:

S
.
= {(s0,s1,s2,s3,s4,s5) | s0,s1,s2,s3,s4,s5 ∈ Z+} (4.17)

Besides the number of halting vehicles and current phase duration a variety of
other factor influencing decision making might be included into the state vector,
such as the current, time, weather, etc. This might be a major improvement to the
accuracy of decision making and will be considered in the future work.

52



Action space

At the beginning of each cycle the agent first receives a state signal, then it per-
forms an action, and, finally, it gets a reward for the action. The agent-environment
interaction is an infinite horizon process (which does not naturally break into episodic
tasks and continues without limits). The intersection has the green, red and amber
phases. The signal plan of each cycle comprises the following components:

1. Green (NS) - Red (WE)

2. Amber

3. Green (WE) - Red (NS)

4. Amber

We modify only the green and red phases, while the amber remains constant.Action
element is a precise value of the green phase duration in the non-conflicting direc-
tions, therefore, cycle length is non-fixed. The minimum duration is 12 seconds, the
maximum is 60. Step size is dt. After each cycle the agent can choose one of the
action from the action space:

• a0
.
= (12,12)

• a1
.
= (12,12+dt)

• ...

• an−1
.
= (60−dt,60)

• an
.
= (60,60)

These actions change the signal plan of the next cycle.

A
.
= {a0,a1,a2..,an} (4.18)

Reward formula

Insofar as the task of the agent is to reduce the number of halting vehicles as
much as possible, while keeping the balance between the conflicting directions, the
reward formula ought to clearly reflect these goals. For this task in our previous work
[60] we used the following continuous reward formula:

St = (NS,WE)→ St+1 = (NS′,WE ′), (4.19)
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the reward signal is defined as follows:

R(St ,St+1)
.
= β

equilibrium term︷ ︸︸ ︷(
|NS−WE|− |NS′−WE ′|

)
+

+(1−β )
(
NS+WE−

(
NS′+WE ′

))︸ ︷︷ ︸
queue reduction term

, (4.20)

where β ∈ [0,1] is the trade-off between the queue reduction and equilibrium terms.
Throughout all the proposed algorithms we have used β = 0.5, i.e. the queue reduc-
tion and equilibrium goals are equally important for learning.

The reward formula 4.20 captures the following intuition: if the difference be-
tween the conflicting directions has decreased, then the first term will be positive;
if the total number of standing vehicles has decreased, then the second term will be
positive, and the reward value will also be positive in proportion to the magnitude
the mentioned values have decreased. In case the values of both goals increase, the
overall reward will be negative in the magnitude of the increases. Finally, when
there is an increase in the value of one goal and decrease in the other, the two terms
of the formula will eat each other and the resultant value will indicate whose impact
is stronger — this accounts for the presence of the plus sign in the formula. How-
ever, if we consider a case where the total number of halting vehicles in the NS and
SN directions is increasing/decreasing, but distribution is high in one direction and
low in other, the proposed reward formula does not take this into account. In addi-
tion, if the number of halting vehicles is large and during the next time interval it
increases/decreases slightly, and if the number of halting vehicles is small the sys-
tem can not distinguish these cases. Therefore, the queue reduction term will give
the same results. For solving described problems, we decided to distinguish four di-
rections and proposed to use two continuous reward formulas. The first one is based
one the queue lengths:

St = (NS,SN,WE,EW )→
St+1 = (NS′,SN′,WE ′,EW ′), (4.21)

We divided the previously used NS and WE directions into two components NS,SN
and WE,EW , respectively.
The reward signal is defined as follows:

R(St ,St+1)
.
=
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.
= β

equilibrium term︷ ︸︸ ︷(
min(µ−NS′,µ−SN′,µ−WE ′,µ−EW ′)

)
+

+(1−β )
(
−max(NS′,SN′,WE ′,EW ′)

)︸ ︷︷ ︸
queue reduction term

, (4.22)

where

µ =
(NS+SN +WE +EW )

4
(4.23)

Minimum from the deviation of the mean in all directions gives information about
how much the intersection is in balance.The queue reduction term considers only the
current state in order to see the worst state from all directions. Now, the value of our
reward in the best case will be 0. When all four directions have the same number of
waiting vehicles or there are no ones, first term will be zero. The second term is zero
when there is no queue.
The second reward formula based on the waiting time. It is common reward repre-
sentation used in the previous researches:

R(St ,St+1)
.
=

N

∑
i=1

wi
t

Nt
−

N

∑
i=1

wi
t+1

Nt+1
(4.24)

where w is the total waiting time of vehicles in the intersection in current and previ-
ous states. N - number of halting vehicles.

4.2.2 Experiments and results
The environment for the experiments is a traffic network in Figure 1. An isolated

intersection built in simulation platform SUMO DLR [41]. The average length of
links is 100 meters. We are excluding the U-turns, public transport, pedestrians,
traffic rules violations, traffic road accidents, and parking. Travel demand models
are given in 4.5. Initial signal plan: the green phase in NS direction is set to 24
seconds, and the green phase in WE direction is set to 42 seconds. Our simulation
runs approximately 28 hours. The parameter settings are given in the Table 4.3 and
Table 4.4.

For the evaluation of our method rewards with average queue lengths and waiting
time were used. Fixed-signal control with predefined phase split is considered as
ground truth.

Two groups of experiments conducted using synthetic data (See Table 4.5). In
the first part of our experiment uniform distributed demand model (Configuration 1)
is used as an environment. The result of the simulations is given in Table 4.7. The
DQN model with proposed rewards and fixed-time controller are compared. For the
fixed control several signal plans were tested, and the best one was chosen: (24s,
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Table 4.3: Parameter settings

Free parameter Value
Action time interval ∆t 6 seconds
Learning rate for Q-learning α1 0.6
Discount factor for reward γ 0.8
ε 0.1

Table 4.4: The NN parameters

Parameter Value
Number of layers 4
Number of neurons 6, 14, 34, 81
Learning rate α2 0.001
Activation function on hidden layers ReLu
Activation function on output layer Linear

24s).
The Reward 1 is oscillated around zero and decreasing (See Figure 4.11). During

the experiment it was noticed that the signal plan had stopped changing. However,
the intersection was overloaded. A situation occurred when our reward formula in-
correctly reflects the state of the environment. The Reward 2 allows us to avoid this
problem. The maximum value of this reward may be zero.

Experiments show that the system with the proposed rewards performs near-
optimal and is able to stabilize when using uniform distributed demand. In the sec-
ond group of experiments we used a mixed demand model, where the arrival rate of
vehicles is changing during simulation time. The results show that system can not

Table 4.5: Demand models

Config NS SN WE EW
1 (0-100000 s) 0.2 0.2 0.2 0.2
2 (0-100000s):
(0-20000 s) 0.2 0.2 0.2 0.2
(20001-40000 s) 0.4 0.4 0.2 0.2
(40001-60000 s) 0.2 0.2 0.2 0.2
(60001-80000 s) 0.2 0.2 0.4 0.4
(80001-100000 s) 0.2 0.2 0.2 0.2
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Table 4.6: Performance on Configuration 1.(QL-queue length, DT-delay time)

Model QL NS QL WE QL SN QL EW
DQN: Reward 1 (12) 5.64 14.23 5.72 11.53
DQN: Reward 2 (14) 6.21 8.19 6.25 9.03
DQN: Reward 3 (16) 3.35 4.56 3.37 4.71
Fixed-time control 5.37 5.31 5.42 5.24
Model DT NS DT WE DT SN DT EW
DQN: Reward 1 (12) 112.57 369.63 113.68 290.99
DQN: Reward 2 (14) 135.82 195.65 135.25 223.35
DQN: Reward 3 (16) 50.26 76.71 50.58 80.19
Fixed-time control 92.93 92.26 93.50 90.03

Figure 4.11: Configuration 1. Reward 1, Reward 2, Reward 3

properly arrange to the new situation and reward value has large deviation (See Fig-
ure 4.12). The controller is being rebuilt all the time and cannot stabilize. There may
be several reasons: lack of NN flexibility, often update (occurs each step), statistics
(history) are not taken into account.

Table 4.7: Performance on Configuration 2. (QL-queue length, DT-delay time)

Model QL NS QL WE QL SN QL EW
DQN: Reward 1 (12) 65.86 25.65 66.16 26.33
DQN: Reward 2 (14) 56.21 34.47 56.85 34.48
DQN: Reward 3 (16) 55.52 31.41 54.62 31.16
Fixed-time control 53.03 29.18 53.15 29.15
Model DT NS DT WE DT SN DT EW
DQN: Reward 1 (12) 1843.41 475.52 1858.93 529.27
DQN: Reward 2 (14) 1460.05 888.77 1509.09 2932.12
DQN: Reward 3 (16) 1257.15 717.91 1171.41 714.81
Fixed-time control 991.66 531.02 985.22 525.54
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Figure 4.12: Configuration 2. Reward 1, Reward 2, Reward 3

In this chapter, we propose a model-free, online, off-policy reinforcement learn-
ing traffic control system. The model is training based on the temporal-difference
learning with ANN. The main bias was on the reward function. Based on the short-
comings of the previous work, a new reward formula was proposed. The adaptive
controller gave near-optimal performance. The experiments were conducted on a
uniform and mixed demand model. The result shows that the system based on the
neural network has difficulties in a non-uniform environment. Some reasons were
identified. To eliminate the disadvantages, it is planned to further expand the neu-
ral network architecture and consider the possibility of describing the state of the
environment with more stable information based on statistics.
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Chapter 5

Link flow estimation based on
deep learning models

This chapter deals with the problem of estimating a certain observed amount of
traffic flow in a given link of a transport network for a short-term forecast [61]. The
aim is to evaluate (calculate) the changes in the flow at the road section over time.
The time interval for future estimation is not fixed and is varied. The link flow is
treated as the probability of vehicles being generated in unit time. The value is not
the exact proportion of the vehicles arrived, but represents some other properties of
traffic flow in the given link. The link flow estimation problem will be formulated as
follows:

• Given data going back and sampled every period of period, is it possible to
predict the link flow Fi,t+m in the near future (at time t + m) based on pre
gained data? Fi,t is the flow rate on the link i at time t.

The presented dataset is a time series data, with a timeseries being a sequence of
observations taken sequentially in time [62]. A time series involves a time compo-
nent, which gives an explicit ordered relationship between observations. There are
two key issues when time series are used for flow estimation:

• The time series analysis requires the process to be stationary. However, the
traffic flow is dynamically changing;

• The spatial characteristics of the time series data are not taken into account in
the classical methods [63]. However, when sequential data are considered it is
important to consider a more deep representation of features.

These issues can be solved by a hybrid model of RNN and CNN, which is pre-
sented in this study. The problem is formulated as a supervised learning regression
task.

The following questions are addressed:

• Is it possible to improve the performance of the baseline model, which is a
fully connected neural network?
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• How far ahead can the model predict the link flow?

In order to solve the problem, different approaches have been undertaken in re-
cent studies, based on mathematical models of traffic flow [64], [65] and data-driven
methods [66], [67]. Early classical methods rely on complex mathematical models
that show low efficiency. Nonparametric methods such as k-nearest neighbor (kNN),
auto regressive statistics in time series (ARIMA), Support Vector Regression (SVR),
and artificial neural network (ANN) have been widely used due to the stochastic and
nonlinear nature of traffic flow data [68] -[70]. The k-NN could not overcome linear
methods, although it gave good results. The Online Support Vector Regression (On-
line SVR) proved to be slightly better in comparison with baselines and exceeded
them under atypical non-repeating traffic conditions. ANN with shallow architec-
ture could not adapt well to the changes in traffic flow, since such a network is not
flexible enough to capture the deep features of traffic flow. Deep learning methods
allow highlighting these features at different levels and have the ability to reveal the
spatial-temporal properties of data. These types of data-driven methods are widely
and successfully used to solve the computer vision problem and NLP problems [71],
[72]. Deep learing methods for forecasting the traffic flow have been used in [73]-
[75]. A new method based on automatic Stacked Autoencoders has been proposed
in [74]. In [75] Stacked Denoising Autoencoders have been suggested to predict the
characteristics of the traffic flow and reveal its hidden features. However, these types
of neural networks are difficult to train due to the complex interconnections between
the layers. The special architecture of ANN that reduces connections and does not
suffer from the curse of measurement is CNN. It is very effective when working with
spatial structure data. Moreover, the combination of several layers allows detecting
global dependencies. The estimation of the link flow by means of a fully-connected
NN has been performed in [76]. However, such networks can consider only a fixed
amount of previous state data to predict the next one. An RNN can take into account
all the previous states in time steps. A combination of recurrent neural networks
and convolutional neural networks would allow understanding spatial-temporal se-
quences well.

5.1 An overview of the proposed models
In this study, three models of deep neural networks have been trained and tested

on a simulator, as well as a fully connected feed-forward network (FCNN). FCNN
is considered as the baseline. The first model is based on the Recurrent Neural Net-
work (RNN). It is a type of neural network that uses internal memory in order to
process sequential data and it takes both the new data and the output from the pre-
vious step as input to the current time step. The main difference between RNN and
other networks is the presence of memory. Fully-connected and convolutional neural
networks cannot remember the previous state. States are not saved between inputs,
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and each one is processed independently. The presented dataset is considered as a se-
quence in time. In order to process data using simple networks, it is needed toprocess
the entire sequence at once. However, the RNN has an internal loop that allows it to
remember the states and reuse the values calculated in the previous state(iteration).
Classical RNNs cannot remember long-term dependencies due to the vanishing gra-
dient problem.

This problem is solved by a type of the RNN-architecture: Long-Short-Term
Memory (LSTM) [77] and the Gate Recurrent Unit (GRU) [78]. The GRU can detect
short-term and long-term dependencies together.

The presented model uses the GRU type. It has an update and reset gates. An up-
date gate z j

t decides how much the past state affects the current state and is calculated
by the following formula:

z j
t = σ(Wzxt +Uzht−1)

j (5.1)

The reset gate is calculated as follows:

r j
t = σ(Wrxt +Urht−1)

j (5.2)

The activation h j
t of the GRU at time t is a linear interpolation between the pre-

vious activation value h j
t−1 and the updated activation value ĥ j

t :

h j
t = (1− z j

t )h
j
t −1+ z j

t ĥ j
t (5.3)

This procedure is taking a linear sum between the existing state and the newly
computed state. The candidate activation ĥ j

t is computed as follows:

ĥ j
t = tanh(Wxt +U(rt

⊙
ht−1))

j (5.4)

where rt is a set of reset gates.

CNN is a type of neural network with specific architecture that considers and
treats input data as spatial. It differs from a fully-connected network in structure,
where neurons are connected with nearest neurons and all have the same weight,
instead of connecting to every neuron in the previous layer. CNN has a very high
performance in solving computer vision problems since the architecture of such a
network fits well to an internal representation of a two-dimensional image. This
allows the model to learn the position and scale invariant structures in the data, which
is important when working with images. This feature of CNN has been used to
process sequence data and find ordered relationships in the time steps of a time series.
CNN is considered as a cheaper alternative model of RNN for time series forecasting
problems.

Classical CNN has the following stacked layers:
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• convolutional :
ck

j = ∑
i

xk−1
i ∗wk

i j +bk
j (5.5)

• activation
xk

j = θ(ck
i ) (5.6)

• pooling
xk+1

j = pooling(xk
j) (5.7)

where xk−1
i is an input, k is an engaged layer.

A 1D CNN is a modified version of CNN where a convolutional hidden layer op-
erates with a 1D sequence. It is very effective when you expect to derive informative
features from fixed-length segments of the overall dataset.

The main difference between the classical 2D CNN and 1D is in the dimension
of input data and the way how the filter passes through the data.

Recent studies show that for certain applications, including analysis of time se-
quences of sensor data and analysis of audio signals, 1D CNNs outperform 2D coun-
terparts due to the following reasons:

• lower computational complexity due to dimensionality reduction

• relatively shallow architecture easier to train

The third model (see Figure 5.1) consists of CNN and RNN modules, where the
first part serves as data conversion for the input of the second module. Preprocessing
data with CNN allows RNN to increase its sensitivity to the data sequence.

Figure 5.1: Combination of CNN and RNN

The loss function used the Mean Squared Error (MSE):

MSE =
1
n

i=1

∑
n
(Yi− Ŷi)

2 (5.8)
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where n - number of estimations, Yi - target value, Ŷi - predicted value.

5.2 Experiments and Results
The traffic flow simulation interface SUMO DLR [41] is used as a tool for nu-

meric experiments. The environment for experiments on synthetic data is an isolated
intersection with two 2-lane edges (see Figure 5.2). Every edge length is 100 meters.
The average vehicle length is 5 meters. The total number of halting vehicles at the
intersection is in the range of 0≤ N ≤ 80.

In order to simplify the dynamics of traffic flows, the left turn (turns) is pro-
hibited, neither public transport, pedestrians, traffic violations, traffic accidents nor
parking are considered.

Figure 5.2: Test intersection. (5 nodes, D01, D10 ... D40 - edge id)

5.2.1 Dataset
Since synthetic data obtained by means of the simulator are generated, it is not

needed to annotate them, as soon as the parameters of the link flow are known. The
task is considered as a supervised learning problem. Several traffic flow settings and
signal plans are used for the data collection process.

The test intersection consists of four directions, and each one is considered in-
dependently. Vehicles from different directions do not interact with each other since
the left turns are excluded from the simulation for simplicity. This allows training the
model in order to estimate the flow in a single direction alone. Then it is used four
times for each direction separately. The equally steady four level traffic is simulated
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(6.1). In this paper, the demand values are the probabilities of generating vehicles
every second in a specified direction. The demand higher than 0.4 for each direc-
tion is not taken into account due to the physical limitation of the test network. The
test intersection with the current settings cannot accommodate more vehicles. Each
simulation lasts 50000 seconds.

Table 5.1: Demand models

Config NS SN WE EW
1 (0-50000 s) 0.1 0.1 0.1 0.1
2 (0-50000 s) 0.2 0.2 0.2 0.2
3 (0-50000 s) 0.3 0.3 0.3 0.3
4 (0-50000 s) 0.4 0.4 0.4 0.4

Each demand model has been simulated with 81 predefined signal plans. In total,
4500 simulation hours with the stationary environment have been launched to collect
data. In this work the traffic light contains two phases: Green (NS) – the green
signal on North-South and South-North directions with the red signal on WestEast
and East-West directions; Green (WE) – the green signal on West-East and East-
West directions with the red signal on North-South and South-North directions. The
signal plan of each cycle comprises the following components:

1. Green (NS) - Red (WE)

2. Amber

3. Green (WE) - Red (NS)

4. Amber

The amber signal is fixed and equal to 3 seconds. The duration of the green phase
is controlled in the NorthSouth and West-East directions. More complex signal plans
can be conducted in a similar way. The predefined signal plans are as follows:

• a0
.
= (12,12)

• a1
.
= (12,12+dt)

• ...

• an−1
.
= (60−dt,60)

• an
.
= (60,60)
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Here dt = 6 seconds is assumed, so that there are 81 different signal plans in
total.

The time step for data extraction is 6 seconds. The following data are recorded:

• The number of halting cars in the North-South direction

• The number of halting cars in the South-North direction

• The number of halting cars in the West-East direction

• The number of halting cars in the East-West direction

• The average delay time of vehicles in the North-South direction

• The average delay time of vehicles in the South-Northdirection

• The average delay time of vehicles in the West-East direction

• The average delay time of vehicles in the East-West direction

• The green phase duration in North-South and South-North directions

• The green phase duration in West-East and East-West directions

• The current phase id (since the data is obtained after a certain period of time,
and not in a single phase)

• The remaining time in seconds until the end of the given phase

Finally, for further work, a dataset has been created with 2700540 rows of data. It
is divided into two parts: training (80% of each type of data) and testing data (20%).

In prediction problems, RNN is used because it considers the sequential nature
of a process. The presented RNN model takes some data from a recent past (a few
last minutes) as input and predicts the link flow that will be in the near future (after
a few minutes).

Many-to-one approach of RNN is used, where the model uses multiple steps as
input to estimate a single prediction. Since the appearance of vehicles in different
directions does not depend on each other, and the test intersection is isolated, the
flow prediction for each direction is carried out separately. A model has been trained
in order to estimate the flow in a single direction.

The problem is formulated as a supervised learning regression task. The exact
statement of the problem is as follows:

• Given data going as far back as lookback timesteps (a timestep is 6 seconds)
and sampled every steps timestep, is it possible to predict the link flow in delay
timesteps?

The input vector for the estimation model is as follows:
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Figure 5.3: GRU link flow estimation model

• the number of halting cars in the specified direction

• the average delay time in the specified direction

• the green phase duration in the North-South and South-North directions

• the green phase duration in the West-East and East-West directions

• the phase ID

• the remaining time in seconds until the end of the given phase.

The presented GRU based model is depicted in Figure 5.3. Each input vector
(feature vector) has six values. At time unit one input block is generated which con-
tains a certain number of feature vectors. The size of the input block depends on how
far back it is desired to analyze the data. The sequence proceeds to the GRU layer,
finally predicts the link flow in the given direction, and gives one value as output.

The following parameter values are used:

• lookback = 100 i.e. our observations of the last 10 minutes

• step = 10 i.e. observations will be sampled at one data point per minute.
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• delay = 10 i.e. targets will be 1 minute in the future

Before training the model, the following two steps are needed:

• Preprocessing the data to a format that the neural network can accept. The
mean normalization has been used for preprocessing.

• Using a Python generator that takes our current dataset and releases data pack-
ages from the previous states along with a target link flow in the future.

The optimal values of free parameters have been selected experimentally.

Table 5.2: GRU model settings

Parameter Value
GRU 5
Optimizer Adam
Loss MSE
Dropout 0,2
Recurrent dropout 0,4

The execution time is 945.88 seconds, of which 914.09 seconds are for model
training. The results of losses in training and validation of the drop-out regularized
GRU model are excellent (See Figure 5.4). There is no overfitting during the 30
epochs. The differences in loss values between training and validation are very small.
It can be concluded that both values are about the same and optimal.

5.2.2 Convolutional Neural Network based model
A CNN based model has been trained to process sequence data. The model takes

the time series sequence from the past as input and forecasts the link flow. The
presented model is a one-dimensional CNN interface with the following structure
(see Figure 5.5):

• a 1D Convolution Layer for recognizing local patterns in a sequence,

• a pooling layer to reduce the input lengths,

• a flatten layer for vectorization.

• a dense layer for regression or classification tasks.
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Figure 5.4: The loss values of training and testing the GRU based model (the loss is
calculated using the MSE function)

Table 5.3: Model

Parameter Value
1D CONV layer
Filters 32
Kernel size 3
Pooling size 3
Hidden layer neurons 5
Optimizer Adam
Loss MSE

The statement of the problem and input vector are the same as for the RNN-based
model in the previous section.

lookback = 100 timesteps (i.e. 10 minutes) is set.
The running time is 350.46 seconds, of which 310.245 seconds are for training. Our
training and validation results are slightly lower than in the RNN-based model (See
Figure 5.6). However, the training and validation loss are converging very well.
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Figure 5.5: CNN estimation model

Figure 5.6: The loss values of training and testing the CNN based model (the loss is
calculated using the MSE function)

69



5.2.3 Hybrid model based on CNN and RNN
In the last model, a combination of a one-dimensional CNN and a regularized

GRU is used. The preprocessing of data with 1D CNN and the order-sensitivity of
RNN give good results. Both the networks are connected in series and settings for
the models are the same as in the previous sections.

This technique is not widely used for sequence data in recent studies [79] and has
not been previously used for the link flow estimation problem. However, the results
of these experiments show that such a combination happens to be very effective and
powerful. This approach allows proceeding using much longer sequences, but, in
order to make a comparison, the lookback (100) and delay timesteps (10) are not
changed.

According to the results of training and validation loss, the given setup is very
good, and it is significantly faster than the other proposed models (See Figure 5.7).
Both loss values are about the same and eventually converge. Therefore, it can be
concluded that the given model has perfect fitting for solving the presented problem.
The execution time is 515.90 seconds, of which 501.19 seconds are for the model
training.

Figure 5.7: Hybrid (CNN and RNN) model link flow estimation training, testing
losses.
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5.2.4 Fully connected neural network (FCNN) based model
In order to evaluate the effectiveness of the presented models, a fully connected

neural network architecture is used as a baseline, where all the neurons in all the
layers fully interact with each other. The architecture of the model is chosen by
a series of experiments. As a result, a three-layer fully connected NN has been
obtained: two hidden layers and an output layer (Table 5.4). Since a fully connected
network has no memory, it is needed to provide it with data for the last few timesteps
at the same time. Here data for 10 timesteps are provided to the neural network as
one feature vector. Therefore, the input vector has length 60.

The results of the experiments show that a simple neural network can solve the
problem with an accuracy of 82 percent. The model is well trained, the training
and the validation loss values are converging, but the FCNN cannot outperform the
previous deep learning models (See Figure 5.8).

Table 5.4: FCSNN Model

Layer Number of neurons
Input 60
First hidden 30
Second hidden 44
Output 4

5.2.5 Comparison of the given methods

Table 5.5: Comparison of the testing loss values of the proposed models

Model Min loss Diff
CNN 0.011 0.505
RNN 0.015 0.007
CNN + RNN 0.007 0.003
FCNN 0.430 0.09

All the models are implemented in Tensorflow [80] and are trained by minimizing
the standard error with the Adam optimization method[81]. The batch size is 32 and
the learning rate is 0.001. For evaluation, the standard deviation (MSE) is used.

Table 5.5 shows the comparison of different approaches for predicting the link
flow rates 10 minutes ahead. The results show that the methods based on CNN
networks work better than the fully-connected one, while the hybrid method is the
best on taking into account the estimating metrics (See Table 5.5).
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Figure 5.8: FCSNN link flow estimation training, testing loss

The situation in a transport network is changing rapidly and is hard to predict.
Therefore, the lookback is chosen to be pretty short. Several numerical exper-

iments have been conducted to reveal the influence of the length of the prediction
time interval.

According to the results, the models can forecast the link flow in the range from
1 to 30 minutes quite successfully. The validation loss values of the models are
compared (Table 5.6). The longer prediction time yields the greater prediction error.

Table 5.6: Testing average loss values with different prediction times

Model 5 min 10 min 15 min 30 min
CNN 0.0094 0.0099 0.0104 0.0102
RNN 0.02639 0.0342 0.0343 0.0345
CNN + RNN 0.0108 0.0108 0.0109 0.0108

The number of tunable parameters in various models is presented in Table 5.7
(for the FCNN, in parentheses is the amount of neurons in each layer). Surely, the
smaller this number is, the bigger the reduction in computations is.

In addition, the presented models have been launched on CPU and GPU in order
to compare the training time. The results show that the CPU works twice faster than
GPU (Table 5.8). This is due to the sequential computation in the GRU layer. The
RNN requires sequential input to calculate the hidden layer weights iteratively. A
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model waits for the hidden state value on the previous state to calculate the next
value.

Table 5.7: Number of training parameters of models

Model Number of parameters
RNN 186
CNN 939
RNN+CNN 1184
FCNN 10560 (2640)

The GPU cores well-doing computations in parallel, sequential computation can-
not utilize fully their computing power. Moreover, while using GPU it is reasonable
to increase the size of the batch in order to allocate the whole memory of GPU, while
in CPU this will increase the training time of the model. Usually, the batch size is
set to be big when data with high noise are used. In this study, it is assumed that
data are noise-free and the small size of the batch is preferable. In addition, GPU is
advantageous in deep learning when applied to images and texts, where the data are
very rich (a many pixels = many variables) and the model has millions of parameters.
The trained models are not complex and do not have a large size.

Table 5.8: Running time of models

type RNN:Avg 1epoch CNN: Avg 1 epoch CNN+RNN: Avg 1 epoch
GPU 30.6s 15.5s 25.1s
CPU 14.7s 11.25s 16.7s

Intelligent control methods mostly have been designed for closed environments
rather than for dynamically changing ones, as a transport network. If an agent is
placed in such an environment then it has to relearn its decision making policy each
time the link flow changes.

This chapter investigates the problem of TSC under nonstationary demand, which
is approximated by a set of piecewise constant link flows.The objective of this study
is to propose a link flow estimation system that can effectively operate in environ-
ments where the demand changes independently of the agents’ actions and approx-
imate link flow in near feature based on historical data. The TSC problem has been
studied with unsteady flow and estimates the changes in the link flow over time.

The novelties of this approach are the following ones:

• The process of link flow estimating does not depend on the traffic control sys-
tem;
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• Novel models used for link flow estimating process, that did not used before
in the given problem scope;

• The estimated link flows can be used to feed to the traffic control system.

Traffic data is considered as a time series. Three models based on RNN, CNN,
and a hybrid one are presented. Models are trained on synthetic data, which is gener-
ated on a simulator. Since the estimation is done in one direction, these methods can
be used in any architecture of the transport network. However, it is necessary to do
forecasting several times. The results show that the given methods outperform the
baseline. The obtained link flow estimations can be used in different traffic control
algorithms to minimize the transport network congestion.
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Chapter 6

ANN Traffic Signal Control
using demand estimates

There are many Artificial Intelligence (AI) solutions to TSC. One of the most
widely used AI techniques is Reinforcement Learning (RL) [19], which is an agent
based learning. It became popular because the RL agents are able to learn on the
fly in a trial-and-error fashion. Additionally, RL can be easily combined with other
AI techniques such as, for instance, Deep Neural Networks (DNN) [29, 27]. On the
other hand, a classical RL has a few serious disadvantages, which restrict its applica-
tion in the context of TLC. Firstly, the agents are supposed to operate independently
of one another and, secondly, the environment is assumed to be stationary [17, 18].

When the TSC problem is considered as MAS [17, 18], the most widely used
techniques are Reinforcement Learning (RL), Deep Learning (DL), Fuzzy Logic
(FL), Evolutionary Computations (EC), Swarm Intelligence (SI), and their various
combinations.

Despite the many advantages of RL it has a few restricting disadvantages. First of
all, it is mostly designed for closed environments rather than for dynamically chang-
ing ones. If an RL agent is placed in such an environment then it has to relearn its
decision making policy each time the demand changes. For instance, Kurmankho-
jayev et al. [82] consider the problem of adaptive light control at a single isolated
intersection. They report the queue length reduction under the stationary demand
conditions, but the approach performs poorly, when the demand changes dynami-
cally, irrespective of the choice of the parameters mentioned by Yau et al. [20].

Next, the RL agents are designed to operate independently of each other [17, 18].
They are bad at collaborative work because the actions of a single agent change the
environment for others, which, in turn, violates the stationarity assumption. Ad-
ditionally, if the agents work in collaboration then they have to share their states
and coordinate actions. As a result the state-action space grows exponentially as
the number of agents increases. An excellent explanation of this issue provided in
[22]. On the other hand, the curse of dimensionality can be partially solved by the
function approximation [27, 83, 84, 85]. Furthermore, this also allows the system to
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incorporate different kinds of information in the state representation [83].
The objective of this study is to propose an Adaptive Traffic Light Control system

that is able to effectively operate in environments where the demand changes inde-
pendently of the agents’ actions. The research is focused on two main questions:

1. Can we solve the problem of TSC using the MAS approach for a non-stationary
environment?

2. Can the optimal signal plan be estimated for a given traffic network if we know
the demand?

6.1 Related works
According to the surveys [17, 18, 20] many attempts were made to apply RL

to the MAS control problem. Initially, the researchers propose to use independent
agents. To be more specific, the actions of agents are chosen independently of one
another based on their local information only. This leads to suboptimal policies.
Later, different kinds of collaboration techniques are employed [22, 86, 51]. These
are based on the concepts of Game Theory, i.e. stochastic staged games, where the
agents share the state but choose their own actions in response to the opponent’s ac-
tion. This has a few limitations. Firstly, centralized system architectures cannot be
used, since even a small number of agents makes the task computationally difficult
due to the joint representation of states. Secondly, any agent’s action changes the
environment at least for its neighboring agents. For this reason, the majority of the
considered MARL systems decentralize system architectures, i.e. the agents collab-
orate only with a neighborhood. As an alternative, swarm intelligence algorithms
can be applied for improving the performance of the cooperative MARL [87, 88].
For example, the approach of El-Tantawy et al. [22] combines two modes of op-
erations: independent mode and cooperative mode. The authors report the average
delay decrease compared to the actuated and fixed controls. They also note that the
cooperative mode outperforms the individual one.

Collaborative MARL systems allow us to slightly improve the control of a traffic
network. However, as mentioned, these approaches still assume stationary environ-
ments. They will not work properly in the case of dynamic demands because they are
forced to relearn their policies each time the demand changes. This happens because
the state values or state-action values are forgotten. For instance, assume an agent
follows an optimal policy for a given particular demand. If the demand changes and
the agent continues to choose actions according to the new outdated policy then it
gets punished by the system because the chosen action would not improve the state
of the environment. In other words, the agent receives a negative reward. This leads
to the policy change. The next time when the environment returns to the initial de-
mand the agent would have a different policy and, hence, it would need to relearn
the optimal policy again.
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An intuitive step towards TSC under the non-stationary demand conditions is to
let the system know when the demand change occurs. This concept requires the
piecewise constant demands. In other words, the demand should have a number of
intervals where it remains constant. Whenever the change is detected the system ac-
tivates an appropriate model. However, there are only a few number of publications
related to this issue [89, 90, 91, 86].

In [89, 90, 91] the authors design a non-stationary demand by a set of piece-
wise-constant demand submodels or so-named contexts [91]. The first two papers
manually define the number of such demand sub-models, and the last one dynami-
cally creates and assigns the appropriate context model. These models assume that

• the changes occur rarely

• the change of environment is independent of agents’ actions

• the dynamic demand can be approximated by a set of piecewise-constant de-
mand models

Additionally, the authors assume that the context cannot be directly obtained, but
can be estimated according to the changes of the transition function and the reward
function.

Our study is similar to [89, 90, 91] as it considers a finite number of demand
sub-models too. However, the principal difference is that it explicitly separates the
phase of context detection and the control. The main hypothesis is that if there is a
simulation model with a known dynamic demand model (target value), we can train
NN to detect changes in demand. As a consequence, we can consider this problem
from the perspective of supervised learning. The training of NN is done offline.

After that, when the NN is trained it is ready for exploitation. It accepts the
sensor data in real time and, based on it, estimates the demand, which is further fed
to the pre-trained control model.

An approximation of the non-stationary demand model by piecewise-constant
sub-models allows us to outline relatively recurrent traffic events such as morning,
noon, and evening congestion peaks.

This study proposes to split the task into two parts: traffic pattern recognition
and decision making. In other words, first, we extensively train a model to recognize
different demands or traffic patterns; then use the estimated demand as an input to
the multi-agent decision making system.

6.2 The proposed method
We explicitly split the demand estimation and traffic light control tasks. For

traffic light control tasks we trained a fully connected Neural Network (NN). The
synthetic data generated by the simulation model are used. The problem is addressed
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as a supervised learning task. We designed a model to control the intersection based
on the demand estimate.

6.2.1 Data collection
First, we collect the data. In order to do that we run the simulation with different

parameters. Each simulation lasts for 50 000 seconds (simulation time units). We
record the simulation states each 6 seconds. The tracked features are the following:

• number of vehicles in North-South direction

• number of vehicles in South-North direction

• number of vehicles in West-East direction

• number of vehicles in East-West direction

• average delay in in North-South direction

• average delay in South-North direction

• average delay in West-East direction

• average delay in East-West direction

• green phase duration in North-South direction (it is the same for South-North)

• green phase duration in West-East direction (it is the same for East-West)

• current phase index

• remaining time (in seconds) till the end of the phase

We choose between 256 demand models and 81 signal plans. It results in 20 736
simulations.

We do not need to annotate the data for the demand estimation task since we
ourselves generated the demand models, hence, their parameters are known to us.
The demand estimation model (NN) is trained on this data.

Second, we annotate the data for the traffic light control, i.e. for each demand
model we find the best signal plan (among the given 81). In order to do that we
compare the averaged queue lengths and delay times of all signal plans, and for each
demand model choose the one that has the lowest queue and delay values.

As a consequence, each demand model has its own best (ground truth) signal
plan. It results in 256 (X ,y) records, where X is a 256× 4 matrix and y is the
corresponding best signal plan.

We may represent y as a 81 dimensional binary vector, which decodes the signal
plan indices.
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6.2.2 Demand models
Our demands are based on the second-based probabilities of vehicles being gen-

erated. For instance, if it is 0.1 in North-South direction then it means that the prob-
ability of a vehicle being generated in this direction each second is 0.1.

Table 6.1: Demand models in terms of simulation step based probability of vehicles
being generated in specified directions

NS SN WE EW
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.2
0.1 0.1 0.2 0.1
· · · · · · · · · · · ·
0.4 0.4 0.4 0.4

6.2.3 Signal plans
We assume that the intersection is a two-phase intersection. We have limited

ourselves only to controll the green phase duration in North-South and West-East
directions, i.e. we fixed the duration of the amber phase.

Table 6.2: Defined list of signal plans. The numbers represent the durations of green
phases in the specified directions in seconds

North-South and South-North West-East and East-West
12 12
12 18
12 24
· · · · · ·
60 60

6.2.4 Traffic light control
Based on a demand estimate, i.e. the four-dimensional vector containing the

probabilities of a vehicle being generated, we choose the signal plan by means of
another offline-trained fully-connected feed-forward neural network. The output of
this model is an index of the optimal signal plan in the list (see Table 6.2). Therefore,
the problem is considered as a classification task.
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Table 6.3: NN architecture

Layer Number of neurons
First hidden 50

Second hidden 55
Output 81

The architecture of the model is chosen by the series of experiments starting
from the simplest structure with one hidden layer and complicated as needed. For
the calculation of the number of hidden neurons the following ’rule of thumb’ is used
as a starting point:

Nhn =
(Ni +No)

2
(6.1)

where Nhn is a number of hidden neurons, Ni and No are the number of neurons in
the input and output layers respectively. The chosen architecture is shown in Table
6.3. It has two hidden layers.

Experiments launched in the same environment as shown in the previous chapter.

6.3 Results and evaluations
The optimal values of the free parameters were manually selected and shown in

Table 6.4.

Table 6.4: Hyperparameter values of NNs

Parameter Value
Leaning rate 0.001
β1 0.9
β2 0.99
Epochs 150
Batch size 64
Activation function on hidden layers ReLu
Activation function on output layer softmax

This model highly overfits and gives the accuracy close to one (and the loss close
to zero, correspondingly). It happens due to the small training set which contains
only 256 entries.

By the design of the problem, there is not much we can do about this issue be-
cause the input of the previous step is a discrete and finite, i.e. there are only 256
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possible combinations that could be fed to the model. On the other hand, that per-
fectly suits us because the model is able to learn the best possible signal plan (among
defined signal plans) given the demand estimate.

This chapter investigates the problem of TSC under non-stationary demand, which
is approximated by a set of piecewise constant demand models. The novelties of our
approach are the following:

• the process of demand estimating is explicitly separated from decision making
system

• the estimated demand is fed to the decision making system

There have only been a few methods related to this problem. Therefore, this
work contributes to the general knowledge of the diverse TSC community. Firstly,
the stationary demand assumption is relaxed; secondly, a new approach of transport
network control is proposed. It is based on separation of the general process to the
state detection and control sub-processes.

The bottleneck of this method resides in the process of data generation and an-
notation - the number of simulations needed for data generation polynomially grows
with the increase of the number of the intersections. Since we need to run simulation
for all possible combinations of demands, signal plans, this might prevent the current
approach from being applied to transport networks with multiple intersections.
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Chapter 7

Conclusion
The TSC task is one of the complex parts of the AI sphere. The given thesis

considers current issues in TSC sphere such as development of model-free adaptive
controllers, that are easily scalable for any network size.

In the given work, a model-free, online, off-policy reinforcement learning traffic
control system is proposed. The model is training based on the temporal-difference
learning with ANN. The main part of the RL is the reward function. For effective
solving the problem a new reward formula was proposed. Several variations of the
reward were implemented. Singularity of the given reward functions is that they
consist of equilibrium and queue reduction terms. The adaptive controller gave near-
optimal performance. The experiments were conducted on a uniform and mixed
demand model.

In the given thesis despite many advantages of RL were identified a few restrict-
ing disadvantages in the scope of TSC problems. The result shows that the system
based on the neural network has difficulties in a non-uniform environment.

Most intelligent control methods have been designed for closed environments
rather than for dynamically changing ones, as a transport network. If an agent is
placed in such an environment then it has to relearn its decision making policy each
time the link flow changes.

In this study a link flow estimation system that can effectively operate in envi-
ronments where the demand changes independently of the agents’ actions and ap-
proximate link flow in near features based on historical data is proposed. The TSC
problem has been studied with unsteady flow and estimations the changes in the link
flow over time.

The novelties of this approach are the following ones: The process of link flow
estimation does not depend on the traffic control system; Novel models used for link
flow estimation process, that haven’t been used before in the given problem scope;
The estimated link flows can be used to feed the traffic control system. Traffic data
is considered as a time series and three models based on RNN, CNN and a hybrid
one are presented. These methods can be used in any architecture of the transport
network. According to observed results, the given methods outperform the baseline.
The obtained link flow estimations can be used in different traffic control algorithms

82



to minimize the transport network congestion. This work contributes to the general
knowledge of the diverse TSC community. First, the stationary demand assumption
is relaxed; second, a new approach of transport network control is proposed which
is based on separation of the general process to the state detection and control sub-
processes. All of the goals are achieved. The obtained results have a high theoretical
and practical significance. The methods of developing and studying models used in
this work can be useful for further study of issues on the given area. The given work
is a significant contribution to intelligent TSC and can be used for further develop-
ment in solving problems of adaptive traffic control.
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