
Suleyman Demirel University

UDC 004.8 Manuscript copyright

SULTANOVA NAZERKE ZHOLDYBAYEVNA

Open Vocabulary Model for Kazakh Language using Deep Neural Networks

6D070400 – Computing Systems and Software

Thesis for the Degree Doctor of Philosophy (PhD)

Scientific advisors:

Assoc. Prof., PhD, Kozhakhmet Kanat
PhD, Adjunct Professor, Mateus Mendes

Republic of Kazakhstan

Kaskelen, 2021



CONTENTS
Normative References………………………………………………………………... 4

Symbols and abbreviations…………………………………………………………. 5

INTRODUCTION………………………………………………………………….... 6

1. PRELIMINARIES……………………………………………………………….... 9

2. LANGUAGE MODELS…………………………………………………………. 12
2.1 Statistical Approach………………………………………………………….... 12
2.2 Neural Language Modeling…………………………………………………... 14

2.2.1. Recurrent Neural Networks……………………………………………... 14
2.2.2 Training recurrent neural networks with back propagation algorithm….. 15

3. CHARACTER-BASED LANGUAGE MODEL………………………………. 19
3.1 Introduction………………………………………………………………….... 19
3.2 Literature Review……………………………………………………………... 19

3.2.1 Statistical approach………………………………………………………. 19
3.2.2 Neural Network approach……………………………………………….. 20

3.3 Methods and System Architecture……………………………………………. 21
3.3.1 Data Description…………………………………………………………. 21
3.3.2 System Architecture……………………………………………………... 21

3.4 Evaluation and Test Results…………………………………………………... 23
3.5 Conclusion……………………………………………………………………. 24

4. APPLICATIONS OF LANGUAGE MODELS IN NATURAL LANGUAGE
PROCESSING TASKS…………………………………………………………….. 26

4.1 Part of speech analysis………………………………………………………... 26
4.2 Stemming Algorithm…………………………………………………………. 31
4.3 Text Classification Methods…………………………………………………... 38
4.4. Summarization Techniques………………………………………………….. 49
4.5 Sentiment Analysis……………………………………………………………. 51
4.6 Anomaly Detection………………………………………………………….... 55

5. PROPOSED MODEL WITH ATTENTION MECHANISM ………………... 60
5.1 Theoretical framework………………………………………………………... 60
5.2 Types of attention mechanisms……………………………………………….. 62

5.2.1 Generalized attention mechanism……………………………………….. 62

2



5.3 Proposed model with attention layer…………………………………………. 67

CONCLUSION……………………………………………………………………... 73

REFERENCES……………………………………………………………………... 74

3



Normative References
This thesis uses references to the following standards:

● ”Instructions for the preparation of a dissertation and author’s abstract” Ministry
of education and science of the Republic of Kazakhstan, 377-3 zh.

● GOST 7.32-2001. Report on research work. Structure and design rules.
● GOST 7.1-2003. Bibliographic record. Bibliographic description. General

requirements and compilation rules.
● GOST 7.32-2017. System of standards of information, librarianship and

publishing. Research report. Structure and design rules.

4



Symbols and abbreviations
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INTRODUCTION
Assessment of the current state of the scientific and technological problem

being solved. For the past 25 years there has been a demand for software solutions
related to text processing, which has repeatedly experienced periods of growth, related to
the emergence of personal computers, and with the rapid development of the Internet,
and the rapid development of the Internet, and, In this natural language remains the most
important way of communication, be the input of the search query on the miniature
screen of the mobile phone, hints of the car navigator or business correspondence.
Practically in all such applications such or otherwise the language model is used. So, for
a convenient input of texts on a mobile phone, it is necessary to use the predicate input
system, which practically corresponds to the direct application of the language model;
language model - an indefinite part of the system of speech recognition, including
volume and vocal search; Linguistic models are used in machine translation systems, the
quality of which at the moment is still far from ideal, but still grows steadily.

Justification of the need for research work. Natural language processing helps
computers communicate with people in their native language and scale other language
tasks. For example, NLP allows computers to read text, hear speech, interpret it, measure
mood, and determine which parts are important.

Modern machines can analyze more language data than humans, without fatigue
and in a consistent, unbiased manner. Given the vast amount of unstructured data that is
generated every day, from medical records to social media, automation will be critical to
efficiently analyzing text and speech data.

While supervised and unsupervised learning, and especially deep learning, are
now widely used to model human language, there is also a need for syntactic and
semantic understanding and domain expertise that are not necessarily present in these
machine learning approaches. NLP is important because it helps disambiguate the
language and adds a useful number structure to the data for many downstream
applications such as speech recognition or text analysis.

Information about the planned scientific and technical level of development,
patent research and conclusions from them are determined by the completeness of the
study of the process of developing models and methods for analyzing the effectiveness
of open vocabulary language models and comparing them with existing models. The
scientific and technical level of the dissertation work will be ensured by the novelty and
adequacy of the results obtained, their practical significance and promising use. As a
result of the research, models and methods for Kazakh text modelling will be developed.

Information about the metrological support of the thesis. When writing the
work, legislative and regulatory documents, official publications on natural language
processing, materials of scientific conferences, as well as state and corporate statistical
and analytical materials and documents were used.
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Relevance of the topic of the dissertation research. The relevance of the
considered topic is based on the need to develop an innovative model for Kazakh
language to be used in natural language processing tasks that is crucial for advancing
digitization of Kazakhstan.

The scientific novelty of the research topic is determined by the fact that the
innovative language model has been built. The substantive novelty differs from the
previous models based on the application of the neural networks using the graphical
processing unit that makes the computation more efficient.

The purpose of the dissertation.
The purpose of the study is the development of models and methods for the analysis of
the effectiveness of language modelling for Kazakh language using deep neural
networks technologies.

Object of research language models with the application of recurrent neural
networks.

Subject of research is the models and methods for creating and improving the
efficiency of neural networks for building the character-based model for Kazakh
language.

Research tasks, their place in the implementation of research work in
general. To achieve the planned results of work, the following tasks have been
identified:

● study and analyze the current state of the art of language models for different
languages

● to develop a functional diagram and architecture of recurrent neural model
● to develop methods and algorithms for character-based language modeling using

recurrent neural networks
● analyze and justify the choice of optimization models for the text generation

models
● compare the performance of the developed model with the state of the art

Methodological base of research. The dissertation research used general
scientific methods of cognition (analysis, synthesis, etc.), principles of consistency and
complexity, comparative analysis and mathematical modeling, methods for analyzing
natural language processes, and manually comparing performance of the proposed
model.

Provisions for Defense. The following provisions are submitted to the defense:
● methods and algorithms for language modeling and text generation;
● methods and algorithms for Kazakh language model;
● novel network architecture to generate Kazakh text;
● results of experiments and discussion

The structure and scope of the thesis. The dissertation work consists of
normative references, list of symbols and abbreviations, an introduction, 5 chapters, a
conclusion, a list of references. It is presented on 82 pages of typewritten text, contains
21  figures, 11 tables, a list of used sources of 108 titles.
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The main scientific results of the dissertation research, set out in the dissertation, are
presented at the international scientific conference in Nigeria, and the results are
published in IEEE Xplore proceedings:

Kazakh Language Open Vocabulary Language Model with Deep Neural
Networks. 2019 15th International Conference on Electronics, Computer and
Computation (ICECCO), Abuja, Nigeria, 2019, pp. 1-4,
doi:10.1109/ICECCO48375.2019.9043253.

Within the framework of this dissertation work, 11 research papers on the topic
under consideration were prepared and published, of which:

● three article each in a foreign publication and in an international peer-reviewed
scientific journals; [1-3]

● four articles were published in publishing houses that meet the requirements of the
highest certification commission of the Ministry of Education and Science of the
Republic of Kazakhstan; [4-8]

● four articles have been published in the proceedings of international conferences.
[9-11]

Acknowledgements. The author thanks her family for continuous support and approval
at each step. The author expresses special gratitude to her scientific supervisor PhD
Kanat Kozhakhmet for his guidance, the opportunity for professional development, and
support during the research. The author expresses sincere gratitude to her external
supervisor Adjunct Professor Mateus Mendes for his comprehensive help and attention
in the process of writing a dissertation.
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1. PRELIMINARIES
Building a language model is a crucial task in computational linguistics.

Especially agglutinative languages require attention since the words are formed by
attaching a sequence of different morphemes, where each morpheme changes the
meaning of the word respectively. For example, with the root оқу (to read), many
different words can be formed such as оқулық (a textbook), оқушы (a pupil), and
оқытушы (a teacher).

Over the last few years, the usage of Deep Neural Networks in NLP is growing
significantly. It overcomes the manual tagging and analysis [12]. Moreover, Deep
Learning has high performance in supervised tasks of NLP such as Sentence
Classification and Sentiment Analysis [13]. Premjith, Soman, and Kumar [14] were
successful in the application of Deep Neural Networks for building the open vocabulary
language model for the Malayalam language.

Data sparsity is a major problem in low-resource languages such as Kazakh. There
is no Word-Net or other tools that have labeled data. Therefore, before working with
complex tasks such as Machine Translation, it is important to learn the model of the
language. This work is devoted to build the open vocabulary language model for the
Kazakh Language with the use of Deep Neural Networks. Open Vocabulary Language
Model in this research, is the generative model that produces all possible correct words
within the context given. A word can be treated as a morpheme generated by characters
where any possible word type could be generated.

Chahuneau, Smith, and Dyer [15] detailed priors for morphologically dense
languages that apply Bayesian language models. The morphological guesser has been
developed with the application of finite-state transducers. The stem lexicon was
eradicated thoroughly to build a lexicon-free analyzer for Russian that has been
preferred for morphological disambiguation. In 2011, Kang, Ng, and Nguen [16]
produced the word-character hybrid-input neural network language model(NNLM) for
the Mandarin language. Within the specified work the n-gram model with NNLM ended
up being in contrast and demonstrated that NNLM has strengths over the n-gram model.
The project was completed by merging two independent neural networks: word input
NNLM and character input NNLM as a hybrid-input model. On top of that, the linear
interpolation of two neural networks may be convenient, yet the hybrid-input model was
computationally faster. The outcomes indicate that the error percentage appeared to be
diminished around 6.3% as opposed to the n-gram language model.. Mikolov et. al. [17]
presented the subword model of a language where all words are splitted into smaller
parts such as syllables. Authors proposed recurrent neural network model using subword
input model rather that hybrid input language model. The model in this work learns the
sequence of words from the set of data. The time complexity was decreased by reducing
the number of nodes in neural network compared to hybrid-input neural model. The
works of [16] and [17] were investigated by Miyamoto and Cho [18], and reach the
optimal method of using the number of entries at the character level and surpass the
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model of word input model. Long-short term memory was used as a recurrent neural
network language model together with the adaptive gate for detecting absolute blend of
the character-based and word-based inputs. Compositional Character to Word (C2W)
model has been proposed by Ling et. al. [19] for constructing word analysis without
explicit word-lookup table. It is remarkably meaningful for agglutinative languages
including Kazakh. The data contains 20K words in five different languages. The test
performance accomplish 97% accuracy. Advantages of character-level and word-level
neural network models were comprised in hierarchical RNN based language model by
Hwang and Sung [9]. Hierarchical neural network consists of two levels: low and high
levels. Character-based input is fed into low level, and the output of this network is fed
into higher level neural network where the actual word predictions are produced. The
outputs are fed into low level model as backpropagation. Word-level recurrent neural
network and hierarchical neural network have been compared and analyzed. It was
deduced that word based RNN’s produce words with less errors, while hierarchical
neural model has fewer features and the parallel computation using GPU increases the
time efficiency.

Morphological analyzer for Kazakh Language was implemented by Kessikbayeva
and Cicekli [21] using rule-based methods. The broad explanation of the rules in Kazakh
langauges and application is given current work. The rule-based analyzer was
implemented using finite state transducers. Since the language is agglutinative, all
morpholocal rules has been written in lexicon files. The efficiency of the work is about
96%. Moreover, morphological analyzers have been developed for different languages
including agglutinative languages. Research papers related to morphological analysis of
agglutinative languages up to the year 2006 were reviewed by Yuret and Ture [22].
Authors presented new rule-based method for morphologcal disambiguation named
Decision Lists. The work itself is composition of three ideas: (1) employing statistical
and rule-based techniques, (2) sparseness problem was solved by considering each
feature separately, (3) analysing the previous tags. The correct results were picked
manually and the error rate was 4%. Statistical language model has been in unsupervised
morphological disambiguation tool that was proposed by Yatbaz and Yuret [23]. Authors
suggest that it will be more efficient to calculate the probability of the word context, but
not the probability of the word. The corpus consists if 1M semi-labelled words, and
conceivable substitution was used to calculate the probability. The work has been
conducted for Turkish language and the accuracy was 64.5%. Authors suggest that this
model can be applied for any language.
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2. LANGUAGE MODELS
The task of language modeling is to determine the probable distribution of words

over the chains of words in some language. In this chapter, different types of language
models will be discussed.

Seq2Seq models are the most commonly used architecture in machine translation
and neural network question-answer systems. The largest amount of memory in such
models is spent on storing a representation matrix containing a representation of each
word from the dictionary. For the word-by-word generation of a consistent answer, it is
required to have, along with the standard form of the word, all its word forms. In some
languages, words have only a small number of word forms (for example, singular and
plural). Nevertheless, in languages ​​such as Russian, many words have a large number of
word forms, obtained by changing the gender, number, case and time. Models with
dictionaries that sufficiently cover the set of all word forms exceed reasonable limits
both in time and memory. Many papers have moved to character-by-character models to
work around this problem. In such models, the size of the dictionary matches the size of
the alphabet used. Symbol-by-character generation allows you to avoid storing word
forms, however, due to the increase in the length of the sequence several times, the
model quickly forgets the beginning of the sentence. An alternative solution is to store
only the standard form of words in the dictionary. Such a model will generate
inconsistent text and cannot be used on a production system. The generator sequentially
processes the words from the normalized question and generates the normalized answer.

2.1 Statistical Approach
Informally speaking, the goal of statistical modeling of a language is to

distinguish between possible (probable) or impossible (unlikely) chains of words in a
given language. This task naturally arises in such practical areas as speech recognition,
optical character recognition (OCR), handwriting recognition [24], machine translation
[25], spell checking, predictive input, and others. In the latter case, the task appears in its
pure form, i.e. the next word is required to be predicted, given the already known left
context.

We consider the last statement formally. Let it be required to evaluate the
probability of a sequence of words in a language L.

(2.1)
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Using this model in its pure form, obviously, would require an estimate of the
probabilities for all admissible word sequences as parameters, which
is not feasible in practice. Therefore, a certain equivalence class Cl is introduced on
sequences: i.e. all sequences falling into the class Cl appear to be equivalent in this
statistical model [6].

(2.2)

The choice as the equivalence class of the coincidence of the last n − 1 words of
the sequence results in the widely known n−gram models:

(2.3)

The likelihood assessment using the maximum likelihood method leads to the
following obvious formula:

(2.4)

where is the number of occurrences of the sequence in the
training set [15]. For (the unigram model), the probabilities correspond to
the frequencies of the words in the corpus. Thus, for the n−gram model, it is
necessary to estimate parameters, where |V | — size of the dictionary, i.e. the
number of different word forms in the training set. So, for a dictionary with a volume of

word forms in the framework of the bigram model, we would have to
evaluate parameters. Therefore, on a sufficiently large case with a
volume of 10 million word usage, no more than 2.5% of the estimated model volume
can be estimated. The remaining bigrams will get zero probability. Obviously, as the
length of the n−gram increases, the situation will become more complicated. On the
other hand, longer n−grams provide a better predictive model [27]. This observation is a
special case of the curse of dimensionality, a problem widely known in machine learning
[28].

This problem directly affects the results of the speech recognition system.
Obviously, assigning zero probability to the true sequence of words automatically
leads to the wrong result, regardless of how clear the pronunciation was. Thus, the task
of statistical modeling of a language is to assess the probability of sequences of words in
a given language, and no sequence should receive zero probability.
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2.2 Neural Language Modeling
In the previous section, it was concluded that the most promising methods of

language modeling today are methods based on recurrent neural networks. In this
section, these methods will be discussed in detail.

2.2.1. Recurrent Neural Networks
In this section, we will consider the classical architecture of a recurrent neural

network, regardless of its application for language modeling.
First of all, it is worth noting that the term “recurrent neural network” hereinafter

refers to the recurrent architecture proposed by Elman in 1990 [29]. Strictly speaking,
this architecture is not the only one. Its more precise name is the Elman network, the
opposite of the earlier Jordan network [30] and the Hopfield network [31]. Below,
however, for convenience, a recurrent neural network will be understood solely as
Elman's architecture.

Elman’s recurrent network is a two-layer neural network in which the hidden layer
obtained in step is input to the network in the next t+1 step. Refer to Figure 2.1

Figure 2.1: General view of Elman’s recurrence network

Consider a sample D consisting of pairs (x(t), y(t)), dependent time series of the
same length. Let (x(t)) and (y(t)) be defined respectively on the sets U and T. Then a
recurrent neural network is a function approximating the conditional distribution
P(y(t)|x(t)) according to the formulas:

(2.5)

and

(2.6)
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where W, U, V - weight matrices, b, d - displacements, x∈ U - element of the predictor
sequence at step t, y ∈ T - probability distribution of elements of an unknown sequence
at the same step t, h ∈ H - hidden network layer, and f and g are activation functions.

The sigmoid function or rectifier linear unit (ReLU) is often taken as f [32]. As g,
a multiclass logit function (softmax) is linear activation.

It should be noted that although formally the sequences (x(t)), (y(t)) have the same
length, at the training stage it is enough to calculate the loss function only at the points
of interest to us, therefore (x(t)) and (y(t)) can actually have different lengths. This
becomes convenient, for example, in the task of assessing the emotional tonality of a
text, when an error can be calculated only after reading the entire text [33].

2.2.2 Training recurrent neural networks with back propagation algorithm
Currently, the main optimization method used to select the parameters of the θ

model of the neural network is the gradient descent method. In the case of selection of
the parameters of the neural network, gradient descent leads to the well-known
algorithm of back propagation of error [28].

A similar approach for recurrent neural networks leads to the so-called
Backpropagation through time (BPTT) [32].

Consider the output of a recurrent neural network at some step t:

(2.7)

We define the error function as the sum of errors at each step of a pair of
sequences:

(2.8)

Obtain expressions for gradients :

(2.9)

(2.10)
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It is seen from Equation (2.7) that the expression for can be obtained in
explicit form if (2.7) is completely written from 1 to t. If we return to representation
Figure 2.1 in the form of a neural network, then we get the graph shown in Figure 2.2. In
fact, we presented the calculation of the output yt as a result of the full cycle of a
multilayer neural network with t−1 layers and the same synapse matrix W. Thus, to

calculate , we will use the back propagation algorithm of the error on the neural
network obtained by time-sweeping the original recurrent network.

Figure 2.2: The calculation scheme in the error propagation algorithm back in time. The
network is shown for 2 steps.

To move on to more formal considerations, for convenience, we introduce the
concept of instant derivative.

Definition 1 (Instant derivative). Let be calculated recursively according to the
equation . The instantaneous partial derivative of θ is the derivative of

with respect to θ if it is assumed that .
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(2.11)

We also note that it follows from the definition of the instantaneous derivative and
Equation (2.11) that

(2.12)

Using the formulas above, we can propose the following effective learning
algorithm for a recurrent neural network [34]. See Table 2.1 for the detailed description
of the algorithm.

This algorithm has complexity Θ(T) along the length of the input sequence [34].
Below are formulas for calculating gradients at each step of the network sweep.

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

As shown in Table 2.1, the gradients are summed up at each step.

Table 2.1  Backpropagation Algorithm
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3. CHARACTER-BASED LANGUAGE MODEL

3.1 Introduction
Implementing natural language jobs is extremely important for agglutinative

languages. The instances of agglutinative languages are Kazakh, Turkish, and Finnish.
The words in these languages are actually built by linking the collection of morphemes.
Every single morpheme is capable of turning the word’s meaning and also the part of
speech. Throughout the last several years, the effective use of Deep Neural Networks in
NLP is expanding drastically. It triumphs over the manual labeling and analysis [12].
Additionally, Deep Learning is powerful in supervised tasks related with NLP which
includes Sentence Classification and Sentiment Analysis [13]. Premjith, Soman, and
Kumar [14] were prosperous with the employing Deep Neural Networks for constructing
the open vocabulary language model designed for the Malayalam language. There are
plenty of low-resource languages similar to Kazakh. For that reason it is imperative to
develop the open vocabulary language model for Kazakh language applying deep neural
networks.

The objective of the project is to develop the character-based generative language
model for the Kazakh Language. Language model in this research is a sequence to
sequence generation task, where an input is a set of the words, and output is the batch of
the words which are constructed using characters. A word can be remedied as a
morpheme produced by characters in which any attainable word option may be
produced. The target is to deliver unseen words which might be easily fit into the
particular context. Unseen word is the word that have not been appeared within the train,
nevertheless, if the root is identical but the suffix differs, we treat it exactly as unseen
word.

3.2 Literature Review
Considerable volume of work continues to be performed related to language

modeling for a variety of kinds of languages. At the moment there are two common
methodologies for language models: statistical and neural network based.

3.2.1 Statistical approach
Chahuneau, Smith, and Dyer [15] detailed priors for morphologically dense

languages that apply Bayesian language models. The morphological guesser has been
developed with the application of finite-state transducers. The stem lexicon was
eradicated thoroughly to build a lexicon-free analyzer for Russian that has been
preferred for morphological disambiguation. In 2011, Kang, Ng, and Nguen [5]
produced the word-character hybrid-input neural network language model(NNLM) for
the Mandarin language. Within the specified work the n-gram model with NNLM ended
up being in contrast and demonstrated that NNLM has strengths over the n-gram model.
The project was completed by merging two independent neural networks: word input
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NNLM and character input NNLM as a hybrid-input model. On top of that, the linear
interpolation of two neural networks may be convenient, yet the hybrid-input model was
computationally faster. The outcomes indicate that the error percentage appeared to be
diminished around 6.3% as opposed to n-gram language model.

3.2.2 Neural Network approach:
Mikolov et. al. [17] presented the subword model of a language where all words

are splitted into smaller parts such as syllables. Authors proposed recurrent neural
network model using subword input model rather that hybrid input language model. The
model in this work learns the sequence of words from the set of data. The time
complexity was decreased by reducing the number of nodes in neural network compared
to hybrid-input neural model. The works of [16] and [17] were investigated by
Miyamoto and Cho [18], and reach the optimal method of using the number of entries at
the character level and surpass the model of word input model. Long-short term memory
was used as a recurrent neural network language model together with the adaptive gate
for detecting absolute blend of the character-based and word-based inputs.
Compositional Character to Word (C2W) model has been proposed by Ling et. al. [19]
for constructing word analysis without explicit word-lookup table. It is remarkably
meaningful for agglutinative languages including Kazakh. The data contains 20K words
in five different languages. The test performance accomplished 97% accuracy.
Advantages of character-level and word-level neural network models were comprised in
hierarchical RNN based language model by Hwang and Sung [9]. Hierarchical neural
network consists of two levels: low and high levels. Character-based input is fed into
low level, and the output of this network is fed into higher level neural network where
the actual word predictions are produced. The outputs are fed into low level model as
backpropagation. Word level recurrent neural network and hierarchical neural network
have been compared and analyzed. It was deduced that word based RNN’s produce
words with less errors, while hierarchical neural model has fewer features and the
parallel computation using GPU increases the time efficiency.

Moreover, morphological analyzers have been developed for different languages
including agglutinative languages. In this section, we describe the background of the
conducted research.

Research papers related to morphological analysis of agglutinative languages up
to the year 2006 were reviewed by Yuret and Ture [30]. Authors presented new
rule-based method for morphological disambiguation named Decision Lists. The work
itself is composition of three ideas: (1) employing statistical and rule-based techniques,
(2) sparseness problem was solved by considering each feature separately, (3) analysing
the previous tags. The correct results were picked manually and the error rate was 4%.
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Morphological analyzer for Kazakh Language was implemented by Kessikbayeva and
Cicekli [21] using rule-based methods. The broad explanation of the rules in Kazakh
languages and application is given current work. The rule-based analyzer was
implemented using finite state transducers. Since the language is agglutinative, all
morphological rules have been written in lexicon files. The efficiency of the work is
about 96%. Statistical language model has been in an unsupervised morphological
disambiguation tool that was proposed by Yatbaz and Yuret [23]. Authors suggest that it
will be more efficient to calculate the probability of the word context, but not the
probability of the word. The corpus consists if 1M semi-labelled words, and conceivable
substitution was used to calculate the probability. The work has been conducted for
Turkish language and the accuracy was 64.5%. Authors suggest that this model can be
applied for any language.

3.3 Methods and System Architecture
3.3.1 Data Description
Each language including Kazakh has its unique structure of word construction.

For text generation purposes and detection of new words, the model needs to understand
the word structure and syllable and character sequences. To be successful in this task, the
book “Abay Zholy” by Mukhtar Auezov that was originally written in Kazakh was used
for training purposes. The dataset contains about 800,000 characters and 110,000 words
with approximately 29,000 of them being unique. For training the neural network, the
data was tokenized, and all words were transformed into character-based one-hot
encoding with the sequence size 256. Stemming methods were not applied to keep the
structure of words unchanged.

3.3.2 System Architecture
Deep Neural Networks were applied for constructing generative language model

for Kazakh. The language modeling is recognized sequence prediction task. Keeping the
long-range dependencies is essential since the aim of the work is to generate valid words
according to the context given. Taking that into account, recurrent neural network named
long-short term memory was adopted.

LSTMs were presented in [35], subsequently improved and popularized by other
researchers, they cope well with many tasks and are still widely used. LSTMs are
specifically designed to address long-term dependencies problems. Their specialization
is the storage of information for long periods of time, so they practically do not need to
be trained. All recurrent neural networks are in the form of a chain of repeating modules
of a neural network. In standard RNCs, this repeating module has a simple structure, for
example, one tanh layer.
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For these tasks, LSTM models were used to generate words because of their
ability to remember the previous state. Two different sets of methods were used to
compare their accuracies.

Model 1 is presented in Figure 3.1. It consists of one embedding layer, 1 LSTM
layer, and dense layer. The model 2 which described in Figure 3.2 consists of two
layered LSTM’s. Each LSTM layer is followed by Dropout to reduce the overfitting
problems. Different parameters were used to train the model to discover which of
them will perform better.

Figure 3.1: Neural network with one layered LSTM
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Figure 3.2: Neural Network with multiple layered LSTM

3.4 Evaluation and Test Results
Evaluation of the model is performed by counting the number of correctly

generated words over the whole set of words that has been generated. The objective of
the work is to generate valid words, however to see that model learns to produce the
correct words with different endings that have not been seen during the training.

The parameters of the first model that was shown in Figure 3.1 are:
● batch size - 128
● number of epochs - 20
● dropout - 0.2
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On the one hand it turned out to be some kind of nonsense. On the other hand, we
see that the understanding of words as a set of characters separated by spaces and even
the use of some punctuation marks begins to form on the neural network.
Since the number of epochs is 20 and the temperature was low - the produced results
were not complex and contain 1-2 syllables.

The results of the first model showed that about 20% of generated words were
valid. And approximately 5% of these valid words were unseen. The testing was done
manually.

For the second model that is shown in Figure 3.2, the parameters were:
● batch size - 512
● number of epochs - 50
● dropout - 0.2

Here we see that the words are mainly composed of letters. Dialogs are marked,
punctuation marks are well placed, etc. If you look from a far and do not read the text, it
looks decent. The words that have been generated have more complex structures with
3-4 syllables. The incorrectly generated words contain fewer errors, and mostly misspell
one or two characters.

The results of the second model showed that about 60% of generated words were
valid. And approximately 2-3% of these valid words were unseen. The testing was done
manually. The results can be improved by adding more informal text - for example, news
or forums since the "Abay Zholy" is a literature book and the text is formal. Moreover,
Word2Vec (FastText) libraries can be used to add the information from the context of the
word.

Character-based input can be extended along with word-based input can be added
to improve the accuracy. The word-based input needs to be used with a pre-trained
embedding model to enhance the precision of the generated words. Generally,
word-based text generation models are not expected to produce new or unseen words,
yet it can help to generate more proper words in the context given. The advantage of the
character-based model is to produce the words with different endings which is a
common task for Kazakh language. Additionally, Named Entities were not added to the
model, which also can boost the effectiveness of the model.

3.5 Conclusion
The research towards Open Vocabulary Language Model for Kazakh language has

been conducted in this work. The use of neural networks is essential to overcome the
sparseness problem and produce relevant results. Moreover, the character-based neural
model is suggested to compromise with limitedness of vocabulary. Therefore, the
mentioned goal will be achieved by implementing by stage and analyzing the proposed
models into a language. Moreover, results shed light on future tasks to emerge the type
of words in a context by adding word type information also. This can be very useful in
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agglutinative languages as the Kazakh language where the meaning and structure of
words are very dependent on word endings.

Even though language models with the character-based input are effective in
sequential tasks, we will need to take into account long-range dependencies. Matthews,
Neubig, and Dyer propose a combination of three processes: generating words as a
character based, generating words as a full word form, and morphological analyzer.[36]
They have shown that their experiments outperform pure character-based language
models. As a future task, Open Vocabulary Language Model for Kazakh Language
supposed to be built as a hybrid input language model with concatenation of character
input, word input and morphological knowledge.
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4. APPLICATIONS OF LANGUAGE MODELS IN
NATURAL LANGUAGE PROCESSING TASKS

4.1 Part of speech analysis
4.1.1 Motivation and related works
Morphological analysis for agglutinative languages can be basically performed in

three different ways: (1) rule based; (2) statistical approach; (3) hybrid. The new
approach is applying the Neural Networks for this task. However, it could be a
challenging task for low-resource languages such as Kazakh. In this section, the state of
the art for morphological parser is described, and the focus will be on agglutinative
languages.

Rule-based approach: Morphological analyzer for Kazakh Language was
implemented by Kessikbayeva and Cicekli [21] using rule-based methods. The broad
explanation of the rules in Kazakh languages and application is given current work. The
rule-based analyzer was implemented using finite state transducers. Since the language
is agglutinative, all morphological rules has been written in lexicon files. The efficiency
of the work is about 96%. The context-based disambiguation accuracy was 87%.

Statistical Approach: Makhambetov et. al. [36] developed a data-driven
morphological analysis based on statistical analysis which considers both inflectional
and derivational morphology. Their method applied Hidden Markov Models and Markov
Chains where there was no need to apply formal rules of the language. According to
k-fold cross validation score, the performance is 90%.

Bolucu and Can [38] extended Bayesian PoS tagger by Goldwater and Griffiths by
applying Hidden Markov Models. The experiments have been done on three languages:
Turkish, English, and Finnish.

Ontology-based approach: Bekmanova et. al. [39] developed morphological
analyzer for Kazakh and Turkish languages based on the onthologic similarities. Authors
developed ontologies for nouns of two languages.

Hybrid approach: Research papers related to morphological analysis of
agglutinative languages up to the year 2006 were reviewed by Yuret and Ture [22].
Authors presented a new rule-based method for morphological disambiguation named
Decision Lists. The work itself is composition of three ideas: (1) employing statistical
and rule-based techniques, (2) sparseness problem was solved by considering each
feature separately, (3) analysing the previous tags. The correct results were picked
manually and the error rate was 4%.

Assylbekov et al. developed the hybrid morphological disambiguation tool for
Kazakh Language. Authors received the data from apertium-kaz that has been tagged
using the rules applied by finite transducers by Washington et. al. [40].
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Neural Networks approach: Premjith et al.[14] have analysed the internal
structure of a word in Malayalam language with the application of Recurrent Neural
Networks. Malayalam language is agglutinative language and suffers from the data
sparsity, therefore the morphemes borders were identified on the character level. Authors
separated the consistent morphemes from the root with the average efficiency of 98%.

Yildiz et al.[41] propose the application of deep neural networks to perform the
task of morphological disambiguation for morphologically rich languages such as
Turkish. Authors have used the semi-automatically disambiguated corpus by [22]. The
efficiency of about 85% was achieved with pre-trained data.

Dhanalakshmi et al. presented the task of morphological analysis as sequence
labeling task for Tamil language which is considered as agglutinative languages. Authors
developed two models for nouns and verbs respectively using SVMTools of Machine
Learning. The morphological analyzer system for verb and noun are trained with the
corpus of 130,000 and 70,000 words respectively obtaining the 94.5% in average.

Toleu et al. [42] propose the character-aware morphological disambiguation tool
for Kazakh and Turkish Languages. Authors use the LSTM neural network which is one
of the Recurrent Neural Networks. The words were analyzed in <root, POS, MC>
triplets. This work has made essential improvement to the state of the art of Kazakh
Language. The achieved accuracy was 91% per token and 88% accuracy per ambiguous
tokens.

4.1.2 Datasets for text processing
Text processing is an essential task in natural language processing. When

conducting any experiments or analysis, the most important factor is the dataset. Kazakh
language is a low-resource language which does not have a common large-scale
database such as Word-net for English. [43]. Word-net is a lexical database which
contains the network of words related by meaning. The words are divided into different
groups by conceptual-semantic and lexical relations. There are many tools that were
created based on the Word-net, for example the tool NLTK in Python [44] that was
developed for text pre-processing purposes for languages including English.

In this chapter we will describe the datasets for Kazakh language that were
suitable for part of speech tagging task.

Apertium-kaz: tool for analysis
One more tool that is available online is apertium-kaz [40] based on Finite State

Transducers. Current state of the apertium-kaz [40] is
● Number of stems: 36539
● Disambiguation rules: 150
● Coverage: 94.5%

It was initially intended to be compatible with other Turkic languages to compute
conversion between languages.

In Kazakh language, one word can have more than one meaning, which makes the
disambiguation task more difficult. Different meanings of a word leads to be tagged as
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different parts of speech. For example in the sentence Ауа райы бүгiн әбден жақсы,
жылы, the word жылы have 5 outputs with:

● "жылы" adj
● "жылы" adv
● "жылы" adj advl
● "жыл" n px3sp nom
● "жылы" adj subst nom

We can notice that the word "жылы"can be a noun, adjective and adverb based on
the context given. The most applicable in this context is adj. The outputs of finite-state
transducers have been arranged in descendingly depending on the obtained probability.

Kazcorpus dataset
Group of researchers of the Computer Science Lab of the Nazarbayev University

Research and Innovation System have developed the Kazakh Language Corpus [37].
This corpus have raw dataset that is available online with about 135 million words.
However, for tagging and analysis it cannot be used. The part of speech tagset was
developed manually with the students specializing in morphology and syntax. The
dataset is in xml format and contains neatly tagged 150 sentences with 1750 words that
can be used for Part of Speech tagging. After parsing the xml file, and converting it to
.csv format, the data looks as in Table 4.1.

Table 4.1: The part of speech tagset from Kazcorpus

Assylbekov’s dataset
Assylbekov et al. developed the hybrid morphological disambiguation tool for

Kazakh Language [45]. The data was taken from the most visited Kazakh wikipedia
sites, and divided into two parts: for training and testing. The authors used different
types of articles for testing and training and to make sure that the articles do not overlap,
which afterall have been tagged using apertium-kaz [40]. The output of apertium-kaz
contains a few outputs, then the output with the highest probability was taken as the
correct label. For this work, the datasets were downloaded from the source and afterall
were parsed into one .csv file. The file contains four columns: the word itself, the root,
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the part of speech and extended morphological knowledge. The information about the
dataset is given in a Table 4.2.

Table 4.2: Train dataset: Most visited wikipedia sites.

Table 4.3: Assylbekov et al. merged dataset

4.1.3 Methods for morphological parser
The goal of this work is to develop a system that determines the part of speech of

the given word. Neural networks approaches have been used for categorical
classification problems.

Neural network is a feed-forward network that contains 2 dense hidden layers.
Architecture of the network is shown in the figure below:
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Figure 4.1: Feed-forward neural network for POS tagging

The dataset is described in chapter 3. The words are translated into the dictionary
which were converted to one-hot encoded vectors. There are 34 unique classes for
different parts of speech. These 34 labels are translated to one-hot encoded vectors as
well.

Results. There are two different approaches for input: the word itself and the root
of the word. The dataset size and the architecture of the network were the same.
The results of the work is stated in the given table 4.4.

Table 4.4: Results

The objective of the research is part of speech tagging was achieved with 85%
accuracy and was increased to 88% when we use the root-based approach. The results
imply that the neural network approach has been successful, however the amount of the
dataset still needs to be increased.

Moreover, in Kazakh language, there are some words which can be in parts of
speeches depending on the context. Therefore, the context of the words needs to be
added as a future task.
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4.2 Stemming Algorithm
4.2.1 Introduction
In Kazakh language the root is the main meaningful part of the word that

expresses the main meaning of the word and the general lexical meaning of all cognates,
the rest parts of the words are called suffixes. There are two types of suffixes in Kazakh:
inflectional and derivational. Derivational suffixes are used for producing new words
from the given root, whereas inflexional suffixes define the word form as: plural,
personal, or possessive.

Compared to English languages where the endings of the words are simple and
lengths are fixed, in Kazakh language - the word roots can have several inflectional
suffixes.

For example, the word оқу - read, can have many different word form such as:
● оқулық - book
● оқушы - pupil
● оқытушы - instructor
● оқыту - teach

It can be noted that there are many words with different meanings with one core
root. In text analysis, classification tasks it is very important that these words with
common roots have similar vector representations. To overcome this issue, the stemming
process is required for any language with rich morphology. Additionally, authors [46]
claim that the stemming and lemmatization algorithms enhance the performance of
natural language processing tasks. Therefore, in language modeling tasks, stemming is
one of the most important parts of the research.

This chapter is to develop a rule-based stemming algorithm for Kazakh language.
The rules are pre-defined using regular expressions. The rules are described in detail in
the Methods section. Stems of the words will be useful in information retrieval, text
classification, and feature extraction that is in high demand in Kazakh language.

5.2 Related Works and Theoretical Framework
Stemming algorithms can be categorized into three types: machine learning (deep

learning), statistical methods, and rule-based methods. Machine learning models use
pattern recognition to determine the stem of the word, while statistical methods use
probabilistic models such as n−gram. Finally, rule-based methods are implemented by
pre-defining the rules for the specific language.

Central research is conducted in different languages. Some of these methods are
similar to the language of this article or are related to aggressive language. Each of them
has its own suggestions, pros and cons, and effectiveness. It is appropriate to discuss,
analyze, and discuss tasks related to uniform investigation and the avoidance of
duplication.
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Turkish language is related to the Kazakh and similar. Both languages are called
Turkic. There are many scientific works related to morphological analysis. Based on
these arguments, the Turkish language is taken as the first example of this research.

The research paper conducted by T.Kışla and B.Karaoğlan [47] describes two
different methods for stemming: rule based and statistical. In order to avoid
disambiguation, part of speech analysis is added to this task. The error rate for POS
tagging is 8%, additionally, manually tagged corpus reduces the error rate to 6%. The
high accuracy of the work has the reason that the suffixes and the dataset are restricted.
Authors suggest that the efficiency of algorithms can be enhanced by enlarging the
vocabulary of Turkish language.

B. Taner Dinçer and B.Karaoğlan [48] have presented the stemming algorithm
which uses probabilistic methods. It was claimed that this algorithm can be applied for
any agglutinative language such as Azerbaijani, Tamil, Indonesiand, and of course
Kazakh. The time complexity is linear, which overcomes the problem of high
computation. The results of the work achieve 96% of accuracy. The algorithm works as
follows: the suffixes are deleted one-by-one leaving the stem alone. The pre-processing
of the text is an important step of this work where foreign words, abbreviations, and
acronyms have been removed from the text. 9,828 words were analyzed correctly out of
10,253.

V.Barakhnin, A.Bakiyeva, T.Batura [49] introduce automatic stemming algorithm
for Kazakh language in 2017. The algorithm is found on well-known Porter’s algorithm
[50] and uses dictionary lookup. Different types of words can be considered as input
including verbs, nouns, adjectives and adverbs. Ending combinations are considered
from the dictionary table and cut off from the end, and the rest is known as the stem of
the word. The research was mainly focused on verbs. Authors believe that presented
algorithm is on the right way of development and some amount of errors were revealed
in testing phase.

V.Gurusamy, S.Kannan, K.Nandhini [51] proposed the research that has been
conducted towards the performance analysis of English language. Three primary
stemming algorithms: Porters, Lovins, Paice/Husk were analyzed, evaluated and
compared. Since English language has simple morphological structure, all three
algorithms used rule-based methodology. Lovins’ algorithm is context-sensitive model
where the longest matched suffix is eliminated. Similar to Lovins’ algorithm, the
Porter’s algorithm is sensitive to the context of a word. Porter’s stemmer is one of most
familiar algorithm for English language. Because of the success of this algorithm, this
algorithm has been implemented for many different languages. On the other side, the
Paice/Husk algorithm for stemming is iterative and conflative. It is similar to Lancaster
stemmer, and known as aggressive algorithm which is conveniently developed. 74,450
English words were validated, and the accuracies are:

● Porter - 80.41%
● Lovins - 81.44%
● Paice/Husk - 82.24%.
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This work uses a rule-based approach to determine the stem of the word. The
morphology and lexical structure of a word can be considered to be successful in
building a rule-based stemmer [52] for Kazakh language. Morphological structures of
nouns and verbs are visualized in Figure 4.2 and 4.3, respectively.

Figure 4.2: Morphological structure of a noun

Figure 4.3: Morphological structure of a verb

Since the derivational suffixes moderate the sense of the given word, derivational
suffix and the stem together makes the totally new stem. Inflectional suffixes follow the
derivational suffixes in a word construction.

For instance, the verb “қала”, which translated to be a ”city” in English and the
verb “бар”, which means ”go” in English, The figure 5.3 and 5.4 show the available
endings for the words “қала” and “бар” respectively.

There are many algorithms for the stem identification, and can be noted that there
are already exists researches that has been conducted earlier. A.M. Fedotov [53]
proposed the set of possible suffixes for the verbs and nouns which were used in this
paper as a baseline.
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Table 4.5: Inflexional suffixes of a noun

Table 4.6: Inflexional suffixes of a verb

4.2.3 Methodology
The goal of the work is to correctly determine the stem of the given word. Since

the suffixes are sequences one after another, and the Kazakh language follows the rules
while constructing the words, rule-based approach was chosen.

The algorithm work using the following principle:
The given word is conditionally separated into two different parts: the root and the

suffix. By the word ”conditionally”, it is assumed that the word has not been necessarily
correctly divided.

Next, the first syllable is chosen as a root:

syllable = re.compile(u"ˆ(.*?[аәеиоөуұүыiэюя])(.*)$")
The next step is to diminish the endings of the given word based on the suffix set

presented by [53].
Divide Word into Root and endings parts.
The notations for the words were used as [37] Ending analysis:
Let noun endings be:
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A1 – plural endings set;
A2 – possessive;
A3 – case;
A4 – personal.
Then, the set of possible ending combinations for noun will be:
A1, A2, A3, A4, A1 + A2, A1 + A3, A1 + A4, A1 + A2 + A3, A1 + A2 + A4, A1

+A2 + A3 + A4, A2 + A3, A2 + A4, A2 + A3 + A4, A3 + A4.
Verb endings:
V1 - negative ending;
V2 - time;
V3 - personal.
Then, the set of possible ending combinations for verb will be:
V1, V2, V3, V1 + V2, V1 + V3, V1 + V2 + V3. [42]

Taking into account the combination rules, the algorithm starts to iterate from the
end of the ending. First of all, a temporary variable is created which cuts off the last of
the ending type. For example, for nouns it is P4 - a personal ending and for verbs P3 is a
personal ending.

Then temporary variable gets compared with an ending that have been created at
the beginning.

First outcome, if they are not equal, iteration proceeds to the next type of endings
and the pattern repeats till the stem has been found, as a result initial ending part changes
and gets concatenated to the root.

Second outcome, if they are not equal, function tries to find other types of
endings, if one has been found, an iteration proceeds. For example, if P 4 is not found,
function searches for P 3 and does the same as the first outcome.

Finally, if there is a match for the derivational suffixes after noun or verb that
make adjectives, endings are deleted. Additionally, after noun and verb endings are
deleted from the word, derivational endings that form adjectives from noun and verb
words are deleted from the word if there is some. The Table 4.5 illustrates the general
stemming algorithm for the noun. Since the purpose is not in the grammar structure,
algorithm goes through the last priority or the last stage ending presence checking and
cutting to the first added ending.

34



Figure 4.4: Stemming algorithm for the noun
4.2.4 Results
Stemmer algorithm’s performance was checked by comparing annotated kazakh

language corpus. The corpus is an open Kazakh Language Corpus, which was carried
out by philology students from Nur-Sultan(Kazakhstan). The Xml version of the dataset
had been further parsed for research. [37]

The results are shown in Table 4.7 Data where all of the existing affixes of the
word are annotated, also the part of speech is defined too. As we can see Stemmer works
well on stated rules of the algorithm, but since there are many of the possible ending
sets, some affixes get deleted too. In addition, there are other parts of speech that have
not been considered, therefore differences occur.
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Table 4.7: The results of stemming algorithm

4.2.5 Conclusion
In conclusion, this paper proposes and describes a rule-based Kazakh language

stemming algorithm. Stemming algorithms have been implemented and extensively used
in English, Russian and other popular and not so complex word structure languages.
Since Kazakh language has more complex and flexible endings and types, which makes
its morphology rich, it is more cumbersome to process the rules.

It is important for Kazakh language to intensify the performance of NLP and IR
areas by developing applicable tools and algorithms that will certainly influence the
performance of processing data.

Algorithm proposed in this paper separates the possible ending combinations
fortunately, but in comparison with annotated data, which had been conducted manually
by masters, who consciously work with Kazakh language sense of word prepared roots,
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admits mistakes. There are several reasons. Firstly, Kazakh language has non-obvious
morphology structure, words can have inflectional suffixes that are derivational.
Secondly, noun and verb endings can be the same, which makes an algorithm allow
mistakes. Finally, named entity recognition algorithms need to be processed first to
avoid the issues. The reasons for stemmer accuracy faults may be various. Exception
words of Kazakh language which do not follow the common rules, as a future work,
exceptions can be added, also the algorithm itself could be enhanced.

4.3 Text Classification Methods
4.3.1 Introduction

There are a large number of industries that manually classify each customer
inquiry to which type or class their inquiry belongs to. In such cases it would be very
useful to classify those inquiries more efficiently.

This paper proposed methods and solutions to automatically classify those
inquiries by using various Machine Learning Algorithms like SVM, Naive Bayes,
Logistic Regression by vectorizing texts using TF-IDF. These methods would
dramatically decrease the time that would be spent to manually do it. Since all texts are
in the Russian language, default text preprocessing methods have to be analyzed to make
sure that they are relevant to Russian texts. This analysis would be very helpful for
industries that are involved in text classification and categorization of any sort. The
organization of this paper is given below: Section 4.3.2 contains Related Works that
have been conducted on similar topics and do the review of algorithms that were used in
this research. Section 4.3.3 explains methods and techniques that were used during this
research. Section 4.3.4 and 4.3.5 demonstrates data description with its properties and
Empirical Analysis of our methods and their results. Section 4.3.6 concludes the paper.
Section 4.3.7 explains how results can be improved and gives other tips related to Future
Work.

4.3.2 Related Works
Text classification methods have become a widely studied field in recent years.

Many researchers already found efficient algorithms for text classification and proved its
effectiveness in classifying the unstructured text documents for the English language.

Borodkin, Lisin and Strielkowski [54] have presented a way of pre-processing the
unstructured text document. Further they mentioned many problems that can occur
during pre-processing and provided the solutions for such cases. Additionally, they
compared many machine-learning algorithms by estimating the results after training
those algorithms on pre-processed data. In this work, authors used Machine learning
algorithms such as k-Nearest Neighbours, Naive Bayes, and k-means within the
Software Package which is a black box. Their comparative results show that the k-means
algorithm outperforms others and has precision of 78,33%.
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Mowafy, Rezk and El-bakry [55] provided their sequence of methods to perform
pre-processing. Besides that, they profoundly discussed the tf-idf algorithm and its
application to their work. Furthermore, they trained various machine learning algorithms
and calculated the most suitable ones to work with the format obtained after vectorizing
using tf-idf. The authors concluded the superiority of Multinomial Naive Bayes with
TF-iDF. Moreover, the proposed model has an application of chi-square which increased
the efficiency from 71% to 76%.

Ashwin, Le Minh and Antal [56] discussed text analytics. They reviewed many
text related problems that companies tried to solve using text analytics. For each
problem they provided the method of solution and the evaluation of that method. It was
revealed that most of the problems with text classification in industry require robust
algorithms since the data comes from different sources. Additionally, k-means algorithm
was proposed as one the convenient algorithms for high clustering quality. Authors
suggest to use minimum supervision, instead apply TF-IDF or GloVe.

Tilve and Jain [57] compared three different text classification algorithms(SVM,
Naive Bayes, and Standford Tagger) that were trained by two unsimilar datasets(20
Newsgroups and New news). According to their results, Naive Bayes algorithm is a
better choice among the others due to its performance and simplicity.

Overall, we analyze all known algorithms and compare their results. It is known
that algorithms outperform one another according to given data and its type. However
some application identities may affect variations in results. Therefore, analyzing best
known algorithms in our case is indispensable to compare their efficiency such as:

● Random Forest Classifier – is one kind of bagging algorithms where a number of
decision trees used on a various subsets of dataset and use the averaging to
decrease the error and prevent over-fitting. [58]

● Support Vector Machines - are universal learners that are used for classification,
regression and outlier detection purposes. It is a very powerful algorithm since it
is very effective in high dimensional spaces and has different kernel functions.
[59]

● Multinomial Naive Bayes – is a supervised learning method that is suitable for
classification of discrete values or fractions such as tf-idf. Naive Bayes algorithms
are based on statistical Bayes Theorem where every pair of features are assumed
to be independent [60].

● Logistic Regression – is a supervised learning algorithm that uses logit function as
its base. The goal of logistic regression is to find the best suitable hypothesis
function [61].

● Decision Tree Classifier - is a non-parametric method that is used for supervised
learning. This algorithm used a tree-like graph model of decisions [62].

4.3.3 Methods
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It is intended to compare all algorithms using TF-IDF as a Vector Space model for
text extraction. In order to be able to build a classification model, there are some general
steps to perform such as:

● Pre-processing phase
● Training/Testing phase
● Usage phase

In this section, these steps are clarified by giving examples and illustrating in
details.

Figure 4.5: The scheme that shows the work process of data

4.3.3.1 Pre-processing phase
Pre-processing phase includes removing stop-words tokenization, removing, stemming.

● Tokenization - is the process of partitioning a string into a list of tokens.
● Removing stop-words - is the process that gets rid of stop-words(e.g.’or’,’and’,

’etc.’) that helps to clean the string and use only meaningful words.
● Stemming - is the process that converts different words into similar canonical

form.
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Figure 4.6: The scheme that shows the pre-processing process.
First of all 4 input fields were concatenated to be used as one input. Each of those

inputs is treated like a different document. NLTK library’s tokenizer [44] is used in order
to perform tokenization.

After obtaining the list of tokens, the data must proceed to a stop-words removal
process that excludes all stop-words and numbers as well. Stop-words removal process
uses NLTK library’s default corpus for Russian language[44]. In addition to stop-words
and numbers removing, named entities were removed by the library too[44] because
they do not have any impact on classifiers. The next and the last step for pre-processing
is stemming. In order to perform stemming pymoprphy2[63] was used . In this way the
pre-processed input is obtained and preserved the text in a clear prepared format for next
phases in text classification which is the hanging and testing phase.

4.3.3.2 Training/Testing phase

In order to start the training process the pre-processed input must be translated
into more convenient form. One of the best techniques is to convert data into vector form
and then use it to work with machine learning algorithms. In this case the data was
translated into TF-IDF vectors.TF-IDF - Term Frequency – Inverse Document
Frequency, is a numerical statistic that shows how important a word is to a document in
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a collection or corpus. Basically, TF-IDF is the product of two statistics, term frequency
and inverse document frequency.

● Term Frequency - is a number of times the word occurs in a document
● Inverse Document Frequency - is a measure of how much information the word

provides, that is, whether the term is common or rare across all documents.

(6.1)

Where = number of occurrences of word i in document j
= number of documents that contains the word i

N = total number of documents

We use this w’s (weights) in our algorithms in such way:

● Multinomial Naive Bayes: [60]

(6.2)

(6.3)
Here is the number of correct words in class c
N is total number of words

is the probability of correct words in class given the weights w.

● Logistic Regression: [61]

(6.4)
where s(w) is sigmoid activation function
w’s are weights and x’s are our features

● Linear SVM: [59]

sgn(w): Sign function for Support Vector Classifier:

if y=1

if y=-1
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To get TF-IDF vectors scikit-learn’s TfIdfVectorizer have been used. This
approach uses uni-grams as well as bi-grams. This would output sparse vector which has
a feature size of 10459.

Where represent the words and the represent the documents. This phase is
in charge for learning the classifier model and the output which is already a trained
classifier and is ready for testing phase.

4.3.4 Data Description
Data for this research were retrieved from the website www.kmggs.kz. The data

consists of 2 separate databases with slightly different structures. First database consists
of 32000 records of customer inquiries. Whereas, the second one is 2000 detailed
records of inquiries. All this data is labeled into 20 classes (Figure 7.5) that are different
in fields. There are 4 main features that customers would provide and they are labeled
into 1 main class and 5 consecutive classes that define the entity of that inquiry.

4 main features are:
1. Main description of an inquiry
2. Short description of an inquiry
3. Technical details of an inquiry
4. Additional info about inquiry
And the classes are as following:
1. Main class: type of a material
2. Group of a material
3. Class of a material
4. Group of a purchase
5. Class of an assessment
6. Quantity of a material
This research mainly focuses on classifying main class because other classes are

can be identified by the main class. From Figure 4.7 you can see that records are not
equally distributed. Also you can see that there are only 13 classes not 20. This is
because other classes are almost nonexistent or can be seen as outliers.

This data is more detailed and contains many classes so in analyzing data this
research would mainly focus on this data. Whereas, the second data-set contains a large
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number of instances but it is not detailed but more generalized. From Figure 6.4 you can
also see that proportions are very similar to the previous one.

This data contains many lexical errors and are not structured. Each instance is
written in a heavily technical language with a mixture of random symbols. Additional
information and technical details fields has many empty cells.

Figure 4.7: Histogram of small data-set.

Figure 4.8: Histogram of large data-set.

4.3.5. Empirical Analysis
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Since the prime goal of this research paper is to analyze and compare algorithms
performance of text classification, main focus would be to analyze their accuracy and
effectiveness in real data then compare their productivity. First of all, let’s look at
TF-IDF. Scikit-learn’s TfIdfVectorizer was used to convert raw text into tfidfVectors
which produced 10459 dimensional vectors for each document. This also used bi-grams
to improve performance. Then cross-validation score was found using scikit-learn’s
cross val score library. Figure 4.9 shows cross validation scores of 5 algorithms. As you
can see from this figure LinearSVC and Naive-bayes algorithms outperformed others.
Random forest and Decision tree classifiers are as expected have worse cross validation
score in text classification.

As can be seen from Figure 4.9 the best algorithm for now is LinearSVC. After
splitting the dataset into test (30%) and train (70%) this model gave the accuracy of
86.33 %. And the heatmap of actual vs predicted can be seen from the Figure 4.10.

Figure 4.9: Cross validation score.
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Figure 4.10: Heatmap of actual vs predicted.

As you can observe from the heatmap most misclassifications are due to classes
like ”STRM”, ”ERSA” and ”ETSM” being classified as class ”ROH”. The sole reason
for this may be due to the fact that class ”ROH” outnumbers other classes very much.
That is why classification report of this model is pretty poor in some of the examples
with few test cases.
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Table 4.8: F1-scores

4.3.6 Optimization with Neural Networks
This chapter is devoted to evaluate whether the Artificial Neural Networks can be

successfully applied to customer inquiry classification task, especially considering the
limited number of dataset available for Russian language. Indeed, it seems that it is a
valuable solution for this kind of problem. Neural Networks. The literature for
applications of Neural Networks is vast and growing. Hassan and Mahmood [64] have
compared the linear classifiers and deep neural networks, and authors propose to
improve the classification model by using deep learning techniques. Kowsari et. al. [65]
proposed the hierarchical deep learning model for text classification which combines a
few neural network architectures, and achieved the 86% of accuracy.

In this work the feed-forward fully connected neural network have been
implemented with five hidden layers, each consists of 512 nodes. Choosing the
optimizer for a neural network is crucial since well trained network need to have
properly defined loss function. The first choice for the optimizer in this work was
”adam” optimizer from sklearn library. Unfortunately, the accuracy for this was about
30-40%. Stochastic gradient descent was the optimization for the neural network.
Stochastic Gradient Descent (SGD) simply updates the expectation and computes the
gradient of the parameters using only a single or a few training examples. The new
update is given by:

The results are given in the Table 4.9
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Table 4.9: F1-scores for Neural Network

From the results given above, we can see that the F1 score is low on the classes
with small amount of data. This happens because we have biased and sparse data and the
NN cannot be properly trained.

4.3.7 Conclusion
In conclusion, it can be noted that inquiry classification in russian can be

performed pretty good with default TF-IDF and with minimal preprocessing if dataset
contains biased class and with limited number of data. It can be seen that LinearSVC and
Naive-Bayes performs very good with TF-IDF. Whereas algorithms like Decision tree
and Random Forest perform poorly. Moreover, it can be noted that with the sparse data,
it is less efficient to apply neural networks. Also, in the process of preprocessing we
have observed that libraries like pymorphy2 are very good for stemming russian
language. Although, it should be noted that it cannot be used with words with spelling
errors. Additional to this Named Entity Removal can be further improved for particular
Kazakhstani companies and locations. This work is important since the analysis of real
data and it coincides with expected results of algorithms.

4.3.8 Future Works
This model can also be improved by working with outliers. Most outliers are the

result of misclassification of the largest class of its closest classes. This can be improved
by building a Doc2Vec library and observing whether those outliers can form clusters so
we can detect them before classification. Doc2Vec is required in order for us to use the
nature of those documents and see if they can be accurately identified. Using this kind of
embedding is due to the fact that Doc2Vec gives us a sort of meaning of those
documents whereas TF-IDF is just frequencies of words in those documents.
Additionally, better Named Entity Removal can be built and applied to this model which
can improve accuracy specific for Kazakhstan locations and names. Moreover χ2
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(chi-square) can be added to TF-IDF in order to improve results as it was proposed
in[55].

4.4. Summarization Techniques
The aim of the chapter is to consider methods for arguably efficient, cost-effective

summarization of texts written in Kazakh Language. This research has a valuable impact
on the solution of problems that are indirectly related to evaluation of extracted
summaries. The research also considers possible ways of abstracting summarized
content to make it possible to use the results as a feed to neural network models. Kazakh
Language’s sentence construction is observed and precisely described the key points that
are unique.

4.4.1 Introduction
Text summarization is a common problem in Deep learning, Natural Language

Processing and the related stuff. Generally it refers to methods, techniques of shortening
long texts. The purpose here is a brief, coherent summary that contains main points, the
gist outlined in the text. Usually, machine learning models are trained to understand texts
by feeding samples all over the net. The useful information is distilled and the required
summarized text comes in the output. Today, our world is built and consists of pure,
unformatted data. The results from the International Data Corporation (IDC) mentions
that the total amount of digital data transmitted all over the servers and clients ranges,
approximately, from 4.4 zettabytes in 2013 to hit 180 zettabytes in 2025. When it comes
to natural language processing, the creation of automatic summarization methods is
considered as a very important task. This would allow any student, teacher, or person
employed in any other professional field to quickly understand a really huge amount of
information at once. Extraction and concatenation of important sentences from the
primary text becomes really difficult when we face the uniqueness of every language the
text is written in. And Kazakh language is not an exception. The language itself contains
a lot of uncommon issues like the “every verb in a sentence written in kazakh is placed
at the end”. That makes difficulties that should be handled very accurately and with
significant attention. The methods that will be used during the research are: extraction
and abstraction. The extraction method selects sentences and phrases that have high
marks of importance, and combines them into a new short text, without changing the
meaning of selected units. When it comes to abstraction, the things are pretty different:
the main content ( text’s gist ) is extracted from the source text and paraphrased using
linguistic methods that are specific to Kazakh language for semantic analysis and text
interpretation. In order to use the mentioned two methods, the sentences should be
preprocessed by applying morphological analysis and pronoun resolution techniques.
Then, we selectively pick the features to later extract important sentences from the text.
All of this collectively gives us properly organized and managed data to be used when
we perform text summarization methods.
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4.4.2 Literature Review
Text summarization techniques have been considered as an objective of many

different researches and have a lot of valuable literature to walk through before
proceeding to the rest of the paragraphs. One can get a thorough review of works on the
subject at the recent surveys [66].

The research briefly reviews several different text summarization approaches. In
order to invest in accuracy we should selectively take text units that have highest scores
as a resultant summary. Hidden Markov models [67], conceptual graphs [68], swarm
intelligence [69] are arguably efficient proposals that can solve the issue. Kazakh
Language’s specific rules and considerations have been discussed through some research
works [70], [71]. Different summarization algorithms such as “TextRank algorithm”,
were used in a recent work of researchers [72]. They collected sample data (cyrillic
russian and kazakh texts) from the web: mostly online news websites used. The method
we use to delete unnecessary noisy indents, punctuation marks and other characters is
described in the following researches: [73], [74].

In order to break texts and sentences to different valuable units that are easier to
tokenize we used a similar way to a segmentation described at [75]. Pronouns in the
sentences located usually at the beginning are removed from the text at the initial stages
of summarization. But in fact, they sometimes carry certain significance as they indicate
to a subject performing a particular action in a sentence. Therefore some of them were
replaced by the concrete names they point to. Other “stopwords” that does not carry any
significant value and special meaning are removed from the text. “Stop words” deletion
also made along with stemming, which is a common technique in text preprocessing
study. There are a lot of other researches that are not directly related but are useful in
certain aspects of cyrillic text recognition and analyzing. One of these is [76]. The
research uses recurrent neural networks to identify kazakh and russian languages which
makes it interesting to learn and walk through. As it comes to specific Kazakh Language
letters, the following researchers have done a huge work on factoring out the differences:
[70], [71], [73]. They mostly consider the spoken language, involving phonetic
transcription of the letters. The methods described there are used in speech recognition
projects and robotic IoT control systems.

4.4.3 Methods
There are two methods for summarizing text: extraction-based summarization and

abstraction based summarization.
Extraction-based summarization
The extractive summarization is a technique involving pulling the keyphrases or

sentences from a text and combining them to create a summary. The extraction is made
according to the defined metric without making any changes to the texts. Different types
of algorithms could be used to arrange the sentences or keyphrases from most important
to the lowest. The final step is to rank the sentences or keyphrases according to their
relevance and combine them to generate a summary.
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Abstraction-based summarization
Abstractive text summarization aims to compress the lengthy texts to the coherent

format which enclose all the most important information and facts from the original
document. Summarization techniques that are based on abstraction, develop new
keywords and sentences that retrieve the most essential information from the source.
Thus, it can be noted that abstraction-based techniques work better rather than
extraction-based methods. The abstraction-based summarization can avoid grammar
inconsistencies when applied using deep learning architectures. The amount of new
phrases which have not arisen in original text measures the level of abstraction. This
level remains low in current approaches. Because of the difficulty of developing
abstractive models, extractive methods are in most use.

4.4.4 Conclusion
The amount of research on computational linguistics is rapidly increasing. The

reasons are the importance and demand of collecting a summary content of a large flow
of information. A key point and effectively constructed summary is always easier for
public perception. A Sample data, taken mostly from news articles, is effectively
extracted and summarized using the methods described in the research. The extractive
summarization method in addition with morphological analysis and “stop words”
removal and resolution techniques are considered in this work along with the description
of abstractive summarization.

4.5 Sentiment Analysis
Natural language processing is considered fundamental for the further

development of artificial intelligence. In Kazakhstan, Machine Learning is getting more
and more popular and actual because it helps to analyze and classify data better. The
goal of this work is to classify Russian texts according to the sentiment, thus, the
hypothesis is that the trained model will predict input data correctly and the application
for the project implemented will work correctly.

4.5.1 Introduction
Among the most interesting and popular methods of this broad scientific field,

there is one that stands alone, called sentiment analysis, which means “analysis of the
tonality of texts”, in our case the language is Russian. The general definition says that
the analysis of the tonality of texts is a class of content analysis methods designed to
automatically detect the emotionally colored vocabulary in the text, as well as the
author’s opinions (emotional assessments) about the objects in the text. In Kazakhstan,
Machine Learning is getting more and more popular and actual because it helps to
analyze and classify data better. Companies get interested in ML specialists. We have
provided with data set, which contain scrapped data from news portals. The problem that
they always face is analyzing national usage of tonality in social networks, it helps to
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detect suspected people and for many other reasons. Our aim was to use train data to
create a model that will predict the sentiment of testing data or input text.

4.5.2 Theoretical framework
Subjective texts are very useful for many applications, for that reason, many

researches have shown interest in sentiment analysis tasks. S. Mukherjee [77] has
discussed the different Machine Learning models to classify the tonality of English text.
Depending on the obtained results, different evaluation metrics have been seen in the
work. Soft computing methodologies have been applied for sentiment analysis in a work
of Kumar and Jaiswal [78]. Authors displayed how soft computing techniques have been
used to overcome the fuzziness such that marked increase in the size, subjectivity, and
diversity of social web data, the ambiguity, and uncertainty. Qazi et. al. [79] pointed out
how traditional classification problems can be addressed to sentiment analysis problems
by adopting improved methods. The work is devoted to review regular, comparative and
suggestive reviews and related sentiment analysis techniques.

4.5.3 Problem description and algorithm
The aim of this work is to construct a model that will identify the tonality (neutral,

positive, negative) of the text (in the file .json formatted file). To be successful in this
task, we need to train the model on current data (train.json). It is worth noting that,
according to the rules, the use of a third-party corpus of texts with a marked key is
prohibited, but this does not prohibit the use of NOT-labeled corpuses for preprocessing
text. The model is trained using machine learning algorithms. The resulting model needs
to be able to identify the label (positive, neutral, negative) of testing texts which have
not been used for training with high enough accuracy.

The process consists of two parts:

1. Building a model on data from the train.json file;
2. Prediction of tonality, using our algorithm, on the data from the .json file. At
the last stage, we send the results of the analysis of tonality to the test data,
namely the CSV file containing the id fields (the unique identifier of the
document, the tonality of which we determined), sentiment (tonality predicted by
the model: negative, positive, neutral).
3. Verification of the results. Scikit-learn accuracy score is used to verify the

results.
The model is trained using machine learning algorithms. The resulting model will

have to determine the class. We have used Random Forest classifier, imported ensemble
models from scikit-learn. We have used the ensembles since with the assumtion that all n
base classifiers have the same error rate , we can express the probability of an error of an
ensemble can be expressed as a probability mass function of a binomial distribution.
That is why the Random Forest algorithm performs better to train the data.

4.5.4 Experimental evaluation
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First of all, the data needed huge preprocessing. initial data had been given in
JSON format and after cleaning data we converted it to CSV leaving needed data for
further usage.

To do this the following processes had been done:
1. Remove non-letters
2. Convert to lower case, split into individual words
3. In Python, searching a set is much faster than searching a list, so convert the
stop words to a set
4. Remove stop words
5. Join the words back into one string separated by space, and return the result.
First, it fits the model and learns the vocabulary; second, it transforms our training
data into feature vectors. The input to fit transform should be a list of strings.
As a visualization of data content, we demonstrate top-10 words:

(They are: (’год’, 34520), (’тенге’, 16268), (’казахстан’, 10545), (’ао’, 10181),(’рк’,
8887), (’области’, 7750), (’млрд’, 7360), (’республики’, 7228), (’развития’, 6215),
(’г’, 6176), (’лет’, 6095), (’алматы’, 5666))

Figure 4.11: Top 10 frequent words

Once data has been preprocessed, Machine Learning algorithm-Random Forest
can be trained. Also, in order to get better results, testing data should be cleaned, as it is
done in our work.

Without preprocessing we have obtained the effectiveness of algorithm was about
60%. As it was proposed in literature review the application of Support Vector Classifier
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and Multinomial Naive Bayes classifiers have increased the performance. The accuracy
for SVM is 82.35% and for Naive Bayes is 82.15%.

4.5.5 Application
One of the major project requirement was to build an app for the implemented

project. In the process, we have discovered the web application framework - Flask.There
are many ways to raise your own web server, which will process HTTP requests from
users and return results to browsers. Since we use Python as our main language, we will
also choose a library that simplifies the creation of a web server for us from the Python
world. Flask is a tool for Python websites. It is a microframework with a built-in web
server.

While testing an application we have faced several problems. For example, we
need to take into account many flask app features, there was a job done to achieve
connection. But the most important case is Memory Error assurance while using
preprocessed training data. We could not use all of the prepared data to predict the
sentiment of input(test) data. Only the piece of the data, that is why used. Also, we do
not have checked all of the data to truthfulness, that is, scrapped data has many words in
one line of trained sentiment, do the results may be predicted wrong, it affected the
results correctness.

Figure 4.12: Sentiment analysis application

4.5.6 Conclusion and Future Works
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As the results show, with the help of this method one can achieve quite high
(82%) accuracy on texts of a certain subject. However, a number of unrecoverable errors
remain (disregarding errors of external modules, such as errors of morphological and
syntactic analyzers). In our opinion, one of the reasons for this kind of error is the
limitedness of the emotive space used: some of the vocabulary does not fall (or only
partially fall) into our emotive space well-good plus the power of emotiveness. The
definition of dimension is an open research question, the solution of which lies in the
field of understanding and perception of information by the human brain. Thus, a
qualitative improvement in the method of determining tonality that we choose needs
further fundamental research, not only in the field of linguistics, but also in the field of
cognitive sciences, such as psychology, psycho, and neurolinguistics.

4.6 Anomaly Detection
Anomaly Detection is very important field in data science. There is very high

correlation between finding outliers in a dataset and developing good algorithm. The
goal of this paper is to review the papers on anomaly detection. Four different
approaches are mostly used to deal with outliers: Statistical methods, Distance-based
methods, Density-based methods, and Cluster-based methods. We will make a
comparative analysis.

4.6.1 Introduction
Anomaly Detection is the problem of finding patterns in data that varies a lot from

the most dataset [80]. Additionally, Goldstein and Uchida [81] claimed that detecting
abnormal experiments within datasets has always been of great interest in data science. It
is essential to develop efficient machine learning algorithms in order to detect anomalies
in distributed behavioral databases. The occurrence of data that is distributed across
different locations has force the need for anomaly detection techniques in distributed
behavioral databases.

The goal of finding outliers from the given dataset is to identify cases that are not
usual within data that is mostly homogeneous. We claim that anomaly revealing is
extremely important because inconsistencies of data lead to critical information in a
wide diversity of application domains. Detecting such deviations from expected
behavior in huge dataset is important for ensuring the normal operations of systems
across multiple domains such as medicine, ecommerce, computer science and more.
Recent studies in this are have been developed in last few decades. For example, there
are algorithms based on random forests. According to the research done by Rodin et al.
[82], these algorithms were successful in many areas, but due to the weaknesses it is not
used now. Recent studies showed that algorithms in deep learning were efficient [83].
However, the use of deep learning for anomaly detection is a research field that is still
very unripe. Angermueller et al. (2016) [83] argued that deep learning techniques, in
general, require costly training processes. When using dynamic behavior, it is difficult to
work with huge training datasets and applying the deep learning techniques successfully.
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In order to prevent financial threats to providers and personal threat to clients, it is
extremely important to report anomalies in systems. Therefore, we are in need to
develop effective machine learning algorithms which were not been previously used in
Kazakhstan to reveal outliers in distributed behavioral databases.

4.6.2 Literature review
Research in anomaly detection has become well established in the last decade,

whereby significant amount of focus has been given to developing efficient machine
learning algorithms. This paper is particularly concerned in the research carried out in
behavior based distributed databases. Anomaly detection has been the topic of a number
of review articles, surveys, and books. [84] implemented broad article on anomaly
detection techniques in machine learning. A deep review of anomaly detection
techniques for numeric as well as symbolic data is presented by Agyemang et al. [85].
Patcha and Park [86] and Hofmeyr et. al. [87] present a survey of anomaly detection
techniques used specifically for cyberintrusion detection.

A significant amount of research on anomaly revealing was realized in statistics
and has been written in several books [88] as well as other survey articles [89]. We can
notice that there are a lot of papers were written on outlier identification, however it is
surprising that many of them do not obtain the expected result. Supervised machine
learning algorithms were used mostly for classification and correlation problems and
were succeeded.However it is very important to detect anomalies to build the robust
model [83]. Moreover, the anomalous behavior is often dynamic in nature, e.g., new
types of anomalies might arise, for which there is no labeled training data. Anomaly
detection will be considered as unsupervised machine learning problem. However
misdetection may lead to catastrophe in some cases such as aircraft traffic safety. Based
on the extent to which the labels are available, anomaly detection techniques can operate
in one of the following two modes: Supervised anomaly detection and Unsupervised
anomaly detection. In a supervised anomaly detection method we will look for a labeled
data, or somehow we need to know which instances are anomalous, however it is not so
often in real world problems. Theoretically, supervised methods are believed to obtain
better results, however it is very difficult to build model upon given dataset. There are
supervised models such as Bayesian method, decision trees, regression, which we can
apply directly if we classify the problem as supervised machine learning. On the other
side, in unsupervised learning, the dataset do not have the label, and we cannot know
whether the given instance is anomalous or not. Of course at first glance we can notice
that some data are really far from the others and thus it is outlier, however we need to
define an algorithm which will detect this outlier. In other words, they need to build a
baseline or foundation of normal behavior. After this step we can build the GOOD
model that can detect potentially risky events, without having a priori knowledge of
what abnormal behavior looks like, by checking if a new event is dissimilar enough from
the definition. Despite the fact that many researchers have significantly contributed to
the anomaly detection using machine learning, several important issues remain unsolved.
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There is a gap in research of dealing with distributed behavioral databases. In last
years, revealing anomalies of behavior based has been gaining broad attention. Hence it
is vital to explore new techniques that will efficiently detect the anomalies in behavioral
databases. In order to deal with behavioral databases we need to understand what kind of
anomalies can be found in this context. Chandola, Banerjee, and Kumar [90]
distinguished the simple anomalies from complex anomalies which has two types:
contextual and collective. In our case, we will be dealing with contextual anomalies with
behavioral attributes. According to Chandola et. al. [90], the behavioral attributes define
the non-contextual characteristics of an instance. The notion of a context is induced by
the structure in the data set and has to be specified as a part of the problem formulation.
Based on the prior research have been made by scholars, we need to use supervised
machine learning techniques in order to reveal anomalies in behavioral databases.
Additionally, since the databases are distributed, huge dataset is going to be used in our
research. Therefore, we will compare different machine learning algorithms in order to
use the most efficient one for our behavioral database or develop a new time efficient
algorithm.

4.6.3 Methods
Statistical Approach. In this approach, we use classical statistical analysis to

determine the probability that this experiment is anomalous. This approach is mostly
used in manufacturing to determine whether the object is in working condition or not.
This is also the very first choice for data scientists to work with anomalous data. Before
doing this analysis, we need to do the preprocessing step, where we determine the most
important features in our dataset. Features are selected after learning their correlation
and interdependencies. Also, since we are focused on anomalous data, it is better for us
to normalize out data. For this, we use Central Limit Theorem from Probability Theory,
since it is the best suitable approach. After that we apply statistical approach to
determine whether it is an outlier. Statistical approach is one of the well-known
algorithms which have been used for outliers identification. Many techniques which can
be found in experiments of Barnett and Lewis [80] and Rousseeuw and Leroy [88] are
mostly one dimensional. That will cause us problems when our dataset is more than one
dimensional because our model will become computationally expensive.

Distance-Based approach. Another important approach is Distance-Based
methods. The particular definition was formed by Knorr et al. [92], which they called
distance-based (DB) outliers.

The metrics for outliers revealing is Euclidean distance, in other words: An
experiment x from a data X is DB(f, D) outlier if the distance of x to X is greater than D.
We can use Mahalanobis Distance as well however using the Euclidean Distance make
our calculations faster because in Mahalanobis Metrics we use the complex covariance
matrices, which will use a lot of time and our model performs slower that is not needed.
However, Mahalanobis Metrics can be applied to any dataset, but Euclidean metrics is
only available for a dataset with independent features,that is why we cannot rely on
Euclidean Distance only because have independent variables is very rare in real
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examples. If we ignore that the variables are not independent, we get the inaccurate
results in most cases of our observation. Moreover, the given definition above uses f and
D which are already given, but it is not usual that we know how far our outliers are
located from the majority of data. Again, if we differently choose f and D, we will obtain
very different results, consequently, we will misevaluate abnormal data which in other
words called anomalies. Because of the problem that we need to calculate all the
distances between each pair of points, we will earn a computational problem. Of course
this can be solved if we use supercomputers to obtain a faster result. Since we do not
have supercomputers in everyday usage the arised question is how to perform the
computation.

Density-Based approach. Breunig et al. [93] proposed the alternative way to deal
with anomalies, which is called density based approach. In this case we calculate how
dense our data points are, and the least dense ones will be specified as outliers. To
measure the density we use local outlier factors, which was first presented by Breunig et
al. [93]. We say that we use the local outlier factor to measure the density between
points. Consequently, if the data has low density it means that it somehow isolated from
its neighbors and thus it is local outlier. Firstly, we define how many k-nearest neighbors
we need. Using this k value, we measure the local density(LD). LD can be identified as
the ratio of the distance between an object and its k − th nearest neighbor and the
average distance to k − th nearest neighbor. If we consider a point whoch is far away
from its neighbors, and his neighbors are lying on a dense cluster of data which means
they have small distances. There are a lot of papers which was written based on the idea
of outlying factor and local density. Moreover, many modification were formed while
studying the term density based outlier. There are also numereus efficient prunting
algorithms which were presented by Jin et al. [94].

Cluster-Based Approach. Another similar appoach to density based outliers is
cluster based outlier detection methods. Firstly, lets understand the principle of
clusterization. There is one famous clustering algorithm which most data scientists use is
k-means algorithm. Basically, we determine the number of clusters, and define their
centroids, it happens differently in various algorithms [95]. The Clustering algorithms
have the common principle that instances that are far away from the centroid are
identified as outliers. Centroid is the center of a cluster, we find it using mean for each
feature. The following table shows a Cluster-Based Outlier detection method which
Christy et. al. [95] proposed. In the algorithm proposed, data is clustered using a
K-Means algorithm and the Euclidean distance of each instance identified. After that the
data is sorted is according to their
distance from the centroids of clusters.

Cluster-based approach is very effective from the computational side, but the
problem occurs when we need to define the number of clusters. If we will use only one
cluster, then this method will be pretty similar to distance based outlier detection
method. On the other hand, if we use that each point is a cluster, we will have troubles in
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defining outliers. since each cluster is a point and each point is a centroid for each
cluster. There are solutions from Deep learning, which we need to apply in the
preprocessing step. Huang et al. proposed the alternative way to Deep Learning is
Outlier detection algorithm (ROCF) without using top n-factors. ROCF briefly clusters
the dataset via constructing Mutual Neighbors Graph, then constructs the Decision
Graph. Finally, ROCF detects outliers and outlier clusters though Decision Graphs
instead of parameter n or α. The result of this algorithm is 87% accurate.

4.6.4 Conclusion
In order to build a successful machine learning model, we need to put an effort to

determine the outliers correctly since it leads to a robust estimation model. In this paper
we made an observation for a few approaches that can detect the anomalies in databases.
The most significant algorithms from every category are briefly discussed; moreover
problems that can be done in future works are also presented in this chapter.
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5. PROPOSED MODEL WITH ATTENTION
MECHANISM

5.1 Theoretical framework
Attention mechanisms is an approach in machine learning that involves extracting

part of the input data (image regions, text fragments) for more detailed processing.
Previously, several models have been proposed that work with text at different

levels: symbols, n-grams and words. Boyanovski et al. [96] propose to use a sequence of
two recurrent networks: one that works with words, but has a small vocabulary, and a
character-by-character model that uses the latent state of the first network as an
additional input. Luong et al. [97] propose to generate and read words that are not in the
dictionary using a character-by-character network. Mikolov et al. [17] propose to use a
small number of the most frequent words, and represent the remaining words as a
sequence of syllables. Johansen et al. [98] propose a similar approach: in their model, all
words are transformed into a representation vector, which is then fed to the input of the
LSTM network. The output sequence in this model is generated character by character.

Often, to solve the problem of image classification, it is not required to process all
the pixels of the image: for example, in the classification problem, the background often
plays an insignificant role. However, convolutional networks, which are the most
popular method for solving this problem, spend the same amount of computational
resources on all parts of the image. For example, Spatial Transformer Networks [99] use
image transformations (eg affine) to highlight the most important areas. Another
approach is the introduction of an agent examining the image [100]. Such an agent at
each moment of time processes a small part of the image, and also decides to which
position to move the focus of attention. Attention mechanisms can be used to improve
the performance of neural networks.

Let us describe the most common approach to implementing attention in neural
networks. Initially, a set of vectors is selected, over which attention will be
carried out. For example, in the problem of generating image headers [90], one can
transform the original message using several convolutional layers and use a set of output
vectors for each pixel as an object of attention. At the second step, a part of the network
generates a key k, which will be responsible for which vectors from will be used.
Using the key, each vector is assigned a weight , which can be interpreted as the
probability that attention should be focused on the object .
Most often, these weights are obtained by the formula:
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(5.1)
As a measure of proximity d(k, h), the cosine coefficient is usually used:

. Thus, attention is focused mainly on objects similar to keys. For
example, if a vector responsible for the texture of the bark is used as a key, then the parts
of the image that show the bark of trees will have the greatest weight.

At the next step, the context vector is calculated - a generalized representation
of attention objects, taking into account the key. There are two approaches to its
assignment: hard attention and soft attention. With strict attention, is taken to be ,
where . When training the model, a Monte Carlo gradient
estimate is used: such an estimate is unbiased, but in practice it has a large variance.
Because of this, hard attention models have to use different variance reduction methods

such as REINFORCE [91]. With soft attention, is calculated as . This
approach allows the model to be trained deterministically end-to-end. Depending on the
weights of attention, information can be either aggregated from the most important parts
of the data, or from only one object. Today, it is the soft attention mechanism that is
more often used, therefore, only it will be considered below [97] [103] [104].

Attention mechanisms are also commonly used in neural network machine
translation. The problem with conventional Seq2Seq models (see section 2.2) is the need
to compress all the information in the presentation vector. This problem becomes
especially significant when translating long sequences. It has been shown [103] [104]
that Seq2Seq with attention significantly improves the performance on long sequences.
As an object of attention in such models, the outputs of the last layer of the coding part
for each word are used. The output of the last layer of the decoding part is selected as a
key. To generate words, the context vector is concatenated with the key and passed
through another recurrent layer.

An important application of attention mechanisms is found in the creation of a
neurocomputer [105] [106] - a neural network that simulates the structure of ordinary
computers. Their distinctive feature is that they have memory and a controller that
allows read and write operations to it. Also, attention is used in differentiated versions of
data structures such as list, stack, deque, queue [107] [108].

5.2 Types of attention mechanisms

The attention mechanism (attention model) is a technique used in recurrent neural
networks (abbreviated RNN) and convolutional neural networks (abbreviated CNN) to
find relationships between different parts of input and output data.
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Initially, the attention mechanism was presented in the context of recurrent
Seq2seq networks for "drawing attention" of decoder blocks to hidden states of RNN for
any encoder iteration, not just the last one.

The success of this technique in machine translation has been followed by its
implementation in other natural language processing problems and applied to CNN to
generate image descriptions [99] and generative adversarial networks [104] (abbreviated
GAN).

5.2.1 Generalized attention mechanism
Generalized attention mechanism is a type of attention mechanism, the task of

which is to identify patterns between input and output data. Initially, the attention
mechanism presented in the original article [106] implied exactly this type of attention.

We will provide an example of using the generalized attention mechanism for a
machine translation task.

Seq2seq Basic Architecture
Understanding the attention mechanism in Seq2seq networks requires a basic

understanding of the Seq2seq architecture before introducing the attention mechanism.
Seq2seq consists of two RNNs - Encoder and Decoder visualized in Figure 5.1.

Encoder - accepts a sentence in language A and compresses it into a latent state
vector.

Decoder - outputs a word in B language, takes the last hidden state of the encoder
and the previous predicted word.

Let's consider an example of the Seq2seq network:

● - words in a sentence in language A.𝑥
𝑖

● - hidden state of the encoder.ℎ
𝑖
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Figure 5.1: Basic principle of Seq2Seq model

Encoder blocks (green) - encoder blocks receiving at the input and transmitting𝑥
𝑖

the hidden state hi to the next iteration.
● - hidden state of the decoder.𝑑

𝑖
● - words in a sentence in language B.𝑦

𝑖
Decoder blocks (purple) - decoder blocks that receive as input or a special𝑦

𝑖−1
token start in the case of the first iteration and return - words in a sentence in B. Send𝑦

𝑖
- the hidden state of the decoder to the next iteration. The translation is considered𝑑

𝑖
complete when is equal to the special token end.𝑦

𝑖
Using attention mechanism for Seq2seq models
Despite the fact that neural networks are viewed as a "black box" and it is often

impossible to interpret their insides in human-understandable terms, nevertheless, an
intuitive attention mechanism for humans was able to improve the quality of machine
translation of the basic Seq2seq algorithm.

The success of using this approach in a machine translation task is due to the best
deduction of patterns between words located at a great distance from each other. Despite
the fact that LSTM and GRU blocks are used precisely to improve the transmission of
information from previous RNN iterations, their main problem is that the influence of
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previous states on the current one decreases exponentially from the distance between
words, at the same time, the attention mechanism improves this indicator to linear [107].

RNNs are used when processing data for which consistency is important. In the
classic case of using RNN, the result is only the last hidden state , where m is theℎ

𝑚

length of the input data sequence. Using the attention mechanism allows using
information obtained not only from the last hidden state, but also from any hidden state

for any t.ℎ
𝑡

Attention mechanism layer structure
Generalized attention mechanism in RNN is shown in Figure 5.2.

Figure 5.2: Generalized attention mechanism

The layer of the attention mechanism is an ordinary, most often single-layer,
neural network at the input of which , are fed, as well as a vector d,ℎ

𝑡
 𝑡 =  1 ...  𝑚 

which contains a certain context depending on a specific task.
In the case of Seq2seq networks, the vector d will be the latent state of the𝑑

𝑖−1

previous decoder iteration.
The output of this layer will be the vector s (score) - the estimates based on which

the hidden state will be "paid attention".ℎ
𝑖
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Then softmax is used to normalize s values ​​[7]. Then e = softmax (s).
Softmax is used here due to its properties:

● ∀𝑠:  Σ𝑛
𝑖=1

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠)
𝑖

= 1
● ∀𝑠,  𝑖:  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠)

𝑖
>= 0

Further, c (context vector) is considered

𝑐 = Σ𝑚
𝑖=1

𝑒
𝑖
ℎ

𝑖

The result of the work of the layer of attention is c, which contains information
about all hidden states in proportion to the assessment of eℎ

𝑖

Applying Attention Mechanism to Basic Seq2seq Architecture
When you add a mechanism to this architecture between the RNN Encoder and

the Decoder of the attention mechanism layer, you get the following scheme:
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Figure 5.3: Sequence to sequence attention mechanism
Here xi, hi, di, yi have the same purposes as in the variant without attention

mechanism.
Encoder hidden states aggregator (yellow) - aggregates all the hi vectors in itself

and returns the entire sequence of vectors h
ci is the context vector at iteration i.

Decoder blocks (purple) - input data changes compared to normal Seq2seq
network. Now, at iteration i, the input is not yi − 1, but the concatenation of yi − 1 and
ci.

Thus, with the help of the attention mechanism, the decoder "focuses" on certain
latent states. In machine translation cases, this feature helps the decoder predict which
hidden states for certain source words in language A to pay more attention to when
translating a given word into language B. That is, which words from the source text to
pay attention to when translating a specific word into the target language.
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Self-attention
Self-Attention is one type of attention mechanism, the task of which is to identify

patterns only between input data.
This technique has shown itself to be so effective in the task of machine

translation that it made it possible to abandon the use of RNNs and replace them with
conventional neural networks in combination with the Self-attention mechanism in the
transformer architecture [108].

This made it possible to speed up the work of the algorithm, since previously the
proposal was processed sequentially using RNN. When using a transformer, each word
in the sentence being processed can be processed in parallel.

The main difference between Self-Attention and the generalized attention
mechanism is that it draws conclusions about dependencies exclusively between input
data.

Consider the sentence The animal didn't cross the street because it was too tired
and the result of the Self-attention algorithm for the word it. The resulting vector
corresponds to the relationship of the word it with all other words in the sentence.

From the visualization of the vector, it can be seen that the Self-attention
mechanism found a relationship between the words it and animal. This result can be
intuitively explained from a human point of view, which allows machine learning
algorithms using this approach to better solve the problem taking into account contextual
relationships.

Self-Attention is also successfully used in GAN networks, in particular in the
SAGAN algorithm [104].

5.3 Proposed model with attention layer
Generating text is one of the challenges that can be accomplished using deep

learning models. This work presents a neural network model for generating natural
language text using a recurrent neural network (RNN) and attention mechanism.

Based on an abstract model, a neural network was developed. The vector model of
the language is used as a coder, which allows moving towards greater "meaningfulness"
of the model and "understanding" of the meaning of words. A recurrent neural network
acts as a decoder, since it allows processing information cyclically as it moves from
input to output, and the output depends on previous calculations, providing a "memory"
effect. The network architecture has three layers: the first layer is the attention
mechanism, and two layers in each the input word layer, the projection layer, the
recurrent layer, and the softmax layer.

Adding an attention mechanism helps the decoder make better use of the input
text information. The mechanism at each generation step determines the so-called
attention distribution (the set of weights corresponding to the elements of the original
sequence, the sum of the weights is 1, all weights> = 0), and from it it receives the
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weighted sum of all hidden states of the encoder, thereby forming a context vector. This
vector is concatenated with the embedding of the decoder input word at the stage of
calculating the latent state and with the hidden state itself at the stage of determining the
next word. So at each step of inference, the model can determine which states of the
encoder are most important to it at the moment. In other words, it decides which input
words context should be considered the most.

Proposed architecture:

Figure 5.4: Proposed architecture with attention layer
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Results:
To obtain the results, random parts of the dataset were taken, on which the

network was trained. The data was fed into the network as the initial context, with the
direct generation of the text, the previously generated words acted as the context. The
network generation results are presented in the table 5.1.

Table 5.1: Results

Input to NN Predicted output

" деп сәлем айтты. бірақ өз
топшылауын білдірмеді. осы кезде
көрші руларға бірнеше кісіні жай ғана
жансыз етіп аттандырған. ол кісілерге
тапсыратын сөздерін де бір өзі ғана
білді. осындай бұйрықтармен жіберген
адамдары да оқшау кісілер. ойда жоқ
жандар. мы

нау тон артынан басын көріп келе
жатқан жақағы қара қара қатындардың
басына қарай тартты.

ік, – деп киіп кетіп ұрыса сөйледі, –
албасты да қабаққа қарай басатын.
қыры жоқ, қасиеті жоқ басшы болса
ыбылыс, жын иектемей нетеді. адал
десек, аман десек, жан берейік,
ақтайық, ақыретте айыбын өз
мойнымызға алайық. бірақ, меңің екі
бірдей жаным жоқ. ма

йыр да барып қалдырмай алған соң,
байдалы бар ма? ала бір қартаң қараң
шығарып, қара бер қайтеді? – деп,
қараша қара қара атыр ала берді.

ғады!– деді.
бұл желқұйын туралы өз аулындағы бір
үлкен аңшының айтқан сөзі еді.
жиренше осыны үнемі айта жүретін.
абайды сол сөзбен желқұйынның
жаланып тұрған түрі қатты
қызықтырды.
– қоянға шығамысың?- деді.
– жүр, атың бар ма? мен сол қоянға
шығып барам

ыз? бұл жақын айтқанын айтып берді.
бірақ құнанбай ауылдары байдалы бар
қара болса, қара қара атыр салып кетті.

а да абай мен ербол бөгелген жоқ.
ертең ерте жүреміз деп, ауыл иелеріне
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Table 5.1 continue

рақмет айтып, асқа да қарамай кетіп
қалды.
келесі күні айтқан сөздерін ақтағандай
боп, екі жігіт бақанасқа кетті.
қаратайдың аулына барып түстеніп,
кеш батқанша сонда болды да, сол күн

дер бастас байлау еді.
бірақ бұл жақын айтқан жоқ. қараша
қара қара атылдары байдалы бар қара
қатты айтып келеді.

жігітек ішіндегі үркімбай аулына түсті.
қыстауының жанында отырған алты
үйдің барлық иті абалап шығып еді,
атшабарлар ақырып, қамшы үйіріп
ұмтылып, бездіріп жіберді.
әрбір үйдің есігін жамылып, баспағып
тұрған балалар да мына тентек
қонақтардан қорқып, ін

дерей болды. бірақ құнанбай аулына
қарай тартты. байдалы айтқан жоқ.

сөздерін ұстап қалады. әлдекімге
қаптап, зіркілдеп сөйлеп отырған әке
сөзі кейде бұған бір жортуыл, шабуыл
үстіндегі шұбырынды, ұзақ сарын
сияқтанады. кейде ұғымсыз сөзден іші
пысып, әкесінің пішін тұлғасына қарап,
қадалып қалады.
тегінде, ертекші, өлеңші

екен. бұл жақында қара қалың қой
қойып қалды. қараша қара қара
атылдары байдалы айтқан сайын
тартып кетті.
абай бұл жақында қалған жақып
тартылдап кеп, қара қатын айтып
келеді.

е жол болатын.
абайға ауылдан шығар жерде зере,
айғыз сондай киімдерді әзірлетіп
ұсынған-ды. кәрі әже әшейінде
абайдың дегеніне көне берсе де, бұл
тұста ырық бермей, қатты бұйрық
еткен:
– ата-бабаң жолы осы! барған елің сені
кінәламайды, "әкесі күйеу, шеше

сі қарап қалдырмаса, бір қара баласы
бар екен. бұл жақын айтқан қалың
қойы бар. алдында қара қара атылдар
де айтқан салып кетті.

– бәсе, одан да соныңды айтсаңшы!
"үлкенмін, ақылым бар, кісіге де ақыл
айтам" дейсің! бөрінің артынан
бөлтірік ақылды болғандықтан ереді
дейсің ғой.
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Table 5.1 continue:

– өй, сен не сандалып келесің осы?
үйдегі алжыған әжеңнің ақылынан
басқа ақыл жоқ деп алғансың ғой өзің
ті

йінді. – деп байлаған екен. бұл
жақында байдалы бар қара қатты
айтқан жоқ.

ай қарап отырып сөйледі. құнанбай
басында мұны аса салқын тыңдады. тек
"жігітекті жаныштаудан тоқтамады
ғой!", "босаспады ғой!" деген сияқты
байдалы дауына жеткен жерде ғана
қабағын лезде қатты түйіп ап, абайға
тіксіне қарады. баласының өзін барлап:
"осыны

ң басына келген жас жағын айтылды
бар екен айтарын болса, алған
айтқаның бар салын болмаса, мен
қарағым, – деп байлаған екен.

As we can see, the generated text coincides with the sentence structure of Kazakh
language. The beginning of the output is allocated with the end of the input sentence.
Generated words are 99% correct:

Number of words: 592
Number of characters: 3749
Incorrect words: 30
Valid words: 95%
New words/unseen: 26 - 4%

The loss function can be seen from the figure below:

70



Figure 5.5: Loss function with attention layer

Conclusion
The developed model can preserve the logic of the narrative and build dialogues

on relatively short texts (3-4 sentences long), but it lacks a global context and
preservation of the structure of the narrative, as in real works of art.

Therefore, further work will be aimed at improving the model in favor of a global
understanding of the “meaning” of what it produces.
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CONCLUSION
The task of language modeling in the narrow sense is to predict the next word

(characters) in the text by looking at the previous words.
The staged work and analysis were performed towards Language Modeling for

Kazakh. First of all, Neural network is indispensable to work with sparse tagged data
and have meaningful results. Thus, character based neural model seems to deal with
limitedness and word based will keep long dependency relations in context. Therefore,
mentioned goal will be achieved by stagely implementing and analysing the proposed
models into a language. Moreover results shed light on future tasks to emerge the type of
words in a context by adding word type information also. This can be very useful in
agglutinative languages like Kazakh language where meaning and structure of words
very dependent on word endings. Language modeling is the most suitable training
ground for applying RNN. The construction of a language model relates to the tasks of
learning without a teacher. At the moment, in the scientific literature there is a large
amount of information on this topic. One of the main authorities in the field of deep
learning, Lecun [2] calls this predictive or predictive learning and considers it a
prerequisite for the acquisition of common sense by neural networks.

In this work, firstly, character-based model was built using LSTM. It was
successfully implemented with some weaknesses. The model was extended by adding an
attention layer, which increased the accuracy of the model. Besides generating correct
text, the model generates the words that it did not see during the training process. It
concludes that the model learned the Kazakh morphology and able to generate words
that are correctly used in the context.

The novelty of the work is that an innovative language model has been built. The
substantive novelty differs from the previous models based on the application of the
neural networks using the graphical processing unit that makes the computation more
efficient.

According to the proposed results, the work contributes to the state of the art of
Kazakh NLP in general. The goals that were planned are achieved: the current state of
the art of language models for different languages was analyzed; architecture of
recurrent neural model was developed and proposed; methods and algorithms for
character-based language modeling using recurrent neural networks were realized; the
choice of optimization models for the text generation models were justified; the
performance of the developed model with the state of the art was compared.

The given work is an important contribution to the Kazakh Natural Language
Processing research area and can be integrated and collaborated with other systems such
as optical text recognition, speech generation, and machine translation.
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48 B. Dincer and B. Karaoğlan, “Stemming in agglutinative languages: A
probabilistic stemmer for turkish”, vol. 2869, Nov. 2003, pp. 244–251. doi:
10.1007/978-3-540-39737-3_31.

49 V. Barakhnin, A. Bakiyeva, and T. Batura, “Stemming and word forms
generation in automatic text processing systems in the kazakh language”, Computational
technologies, vol. 22, pp. 11–21, 2017.

50 M. Porter, “An algorithm for suffix stripping”, Program: electronic library
and information systems, vol. 40, pp. 211–218, 2006. doi: 10.1108/00330330610681286.

51 V. Gurusamy and S. Kannan, “Performance analysis: Stemming algorithm
for the english language”, International Journal for Scientific Research and
Development, vol. 5, pp. 2321–613, Aug. 2017.

52 S. Bekturov, Қазақ тiлi: фонетика, грамматика, морфология, синтаксис ,
The Science of Microfabrication. 2006.

53 A. Fedotov, J. Tussupov, M. Sambetbayeva, I. Idrisova, and A.
Yerimbetova, “Development and implementation of a morphological model of kazakh
language”, Eurasian Journal of Mathematical and Computer Applications, vol. 3, no. 3,
pp. 69–79, 2015.

54 A. M. Borodkin, E. Lisin, and W. Strielkowski, “Data algorithms for
processing and analysis of unstructured text documents”, Applied mathematical
sciences, vol. 8, pp. 1213–1222, 2014.

55 M. Mowafy, A. Rezk, and H. El-Bakry, “An efficient classification model
for unstructured text document”, American Journal of Computer Science and
Information Technology, vol. 06, Jan. 2018. doi: 10.21767/23493917.100016.

56 A. Ittoo, L. M. Nguyen, and A. [ den Bosch], “Text analytics in industry:
Challenges, desiderata and trends”, Computers in Industry, vol. 78, pp. 96–107, 2016,
Natural Language Processing and Text Analytics in Industry, issn: 0166-3615. doi:
https://doi.org/10.1016/j.compind.2015.12.001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0166361515300646.

57 A. K. S. Tilve, “Text classification using naı̈ve bayes, vsm and pos tagger”,
2017.

58 L. Breiman, “Machine learning, volume 45, number 1 - springerlink”,
Machine Learning, vol. 45, pp. 5–32, Oct. 2001. doi: 10.1023/A:1010933404324.

59 T. Joachims, “Text categorization with support vector machines: Learning
with many relevant features”, in Machine Learning: ECML-98, C. Nédellec and C.

77

http://www.sciencedirect.com/science/article/pii/S0166361515300646


Rouveirol, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 137–142,
isbn: 978-3-540-69781-7.

60 G. I. Webb, “Naı̈ve bayes”, in Encyclopedia of Machine Learning, C.
Sammut and G. I. Webb, Eds. Boston, MA: Springer US, 2010, pp. 713–714, isbn:
978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8_576. [Online]. Available:
https://doi.org/10.1007/978-0-387-30164-8_576.

61 D. G. Kleinbaum, “Introduction to logistic regression”, in Logistic
Regression: A Self-Learning Text. New York, NY: Springer New York, 1994, pp. 1–38,
isbn: 978-1-4757-4108-7. doi: 10.1007/978-1-4757-4108-7_1. [Online]. Available:
https://doi.org/10.1007/978-1-4757-4108-7_1.

62 T. Hastie, R. Tibshirani, and J. Friedman, “The elements of statistical
learning”, Aug, Springer, vol. 1, Jan. 2001. doi: 10.1007/978-0-387-21606-5_7.

63 M. Korobov, “Morphological analyzer and generator for russian and
ukrainian languages”, in Analysis of Images, Social Networks and Texts, M. Y.
Khachay, N. Konstantinova, A. Panchenko, D. Ignatov, and V. G. Labunets, Eds., Cham:
Springer International Publishing, 2015, pp. 320–332, isbn: 978-3-319-26123-2.

64 A. Hassan and A. Mahmood, “Deep learning for sentence classification”,
2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT), pp.
1–5, 2017.

65 K. Kowsari, D. E. Brown, M. Heidarysafa, K. Jafari Meimandi, M. S.
Gerber, and L. E. Barnes, “Hdltex: Hierarchical deep learning for text classification”,
2017 16th IEEE International Conference on Machine Learning and Applications
(ICMLA), Dec. 2017. doi: 10.1109/icmla.2017.0-134. [Online]. Available:
http://dx.doi.org/10.1109/ICMLA.2017.0-134.

66 M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B.
Gutierrez, and K. Kochut, Text summarization techniques: A brief survey, 2017. arXiv:
1707.02268 [cs.CL].

67 J. M. Conroy and D. P. O’leary, “Text summarization via hidden markov
models”, in Proceedings of the 24th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, ser. SIGIR ’01, New Orleans,
Louisiana, USA: Association for Computing Machinery, 2001, pp. 406–407, isbn:
1581133316. doi:10.1145/38395.2384042. [Online]. Available: https://doi.org/10.1145/
383952.384042.
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