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DEFINITIONS 
 

In this dissertation, the following terms are used with the corresponding 
definitions: 

Artificial neural networks (ANN) are computing machines built on the basis 
of biological neurons for complex data processing and simulation of analytical 
operations.  

Artificial intelligence (AI) is the replication of human intellectual functions by 
machines, particularly computer systems.  

Background subtraction (BS) is a popular computer vision-based moving 
object detection technique that removes extraneous background from the image and 
takes just the essential details of the foreground object. 

Computer vision (CV) is a branch of artificial intelligence, which allows 
machines to extract useful information from visual data such video sequences, images 
etc.  

Deep learning is one type of machine learning that uses neural networks 
consisting of two and more layers for modeling and solving complicated tasks. 

Drone is an unmanned flying object that moves autonomously in the air and 
does not require pilot control. 

Image classification is another computer vision task of classifying and labeling 
sets of pixels or vectors in an image in accordance with established criteria.  

Machine learning is a subfield of artificial intelligence that aims to build 
systems that can learn from the data they are fed. 

Object detection is computer vision approach for finding and locating regions 
of interest in videos and images. 

Radar is a reliable sensing instrument that determine the presence, distance, 
speed, and direction of any object.  

RF sensor is an effective detection technique that detect objects through energy 
emitted by radio transmitters. 

Sensor fusion is a technique of combining or integrating data from multiple 
sensors. 

Transfer learning is the process of reusing pertinent elements of a machine 
learning model that has already been trained to address a new but related problem. 
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DESIGNATIONS AND ABBREVIATIONS 
 
AI – Artificial Intelligence  
ANN – Artificial neural network 
AP – Average Precision 
BN – Batch Normalization 
BS – Background Subtraction 
CNN – Convolutional Neural Network  
CPU  – Central Processing Unit  
CS – Confidence score 
CV – Computer vision 
C-UAS – Counter Unmanned Aerial System 
DL – Deep Learning  
FAA – Federal Aviation Administration  
FC – Fully connected 
FD – Fourier descriptor 
FN – False Negative 
FP – False Positive 
FPS – Frame Per Second 
GAN – Generative adversarial network 
GFD – Generic Fourier Descriptor 
GMM – Gaussian Mixture Model 
GPU  – Graphics Processing Unit 
GSM – Global Positioning System 
HOG – Histogram of oriented gradients   
HSV – Hue Saturation Value 
IoU  – Intersection over Union 
KCF – Kernelized Correlation Filter 
KSQ  – Korean Square 
LOS – Line of sight 
ML  – Machine Learning  
MLP – gMultilayer Perceptron  
NN  – Neural Network  
PBAS – Pixel Based Adaptive Segmentator 
PBRT – Physical Based Rendering Toolkit 
PTZ – Pan-Tilt-Zoom 
RCS – Radar cross-section 
ReLU – Rectified Linear Unit 
ResNet  – Residual network 
RF – Radio Frequency 
ROC-curve – Receiver operating characteristic curve 
RGB – Red, Blue, Green  
RPN  – Region Proposal Neural Network 
TN  – True Negative 
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TP  – True Positive 
SGD  – Stochastic Gradient Descent 
SSD – Single-shot detector  
SVM  – Support vector machine 
UAV – Unmanned aerial vehicle 
UV  – Ultra violet 
ViBe – Visual Background Extractor 
VGG  – Visual Geometry Group 
VS  – Visible spectrum 
YOLO  – You Only Look Once 
ZFNet – Zeiler and Fergus Network 
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INTRODUCTION 
 
General characteristics of research. This work is aimed at research and 

development of an unmanned aerial vehicle (UAV) detection system based on smart 
sensors. 

Relevance of the research topic. The best drone manufacturers on the market, 
like DJI, Parrot, and 3D Robotics, are constantly producing affordable and simple-to-
use models of unmanned aerial vehicles (UAVs), also referred to as "drones," that can 
be used for a variety of legal commercial applications, including photography, first aid, 
agriculture, delivering packages, monitoring crowded places etc. However, the use of 
drones for illegal purposes, such as smuggling (transporting illegal substances at 
borders, in restricted areas, and prisons), espionage (illegal video surveillance of 
people, businesses, and government organizations), collisions with aircraft, drones 
loaded with explosives or chemicals, the use of drones for attack purposes [1] and other 
situations can cause serious problems for society. Prohibition of an unauthorized drone 
flight over the building of the Ministry of Defense of the Republic of Kazakhstan by 
the operational response group of the Military Police in March 31 of 2019 [2], 
confiscation  of illegal transportation of the psychotropic drug “Tramadol” from the 
border of Kazakhstan to the border of Uzbekistan by Uzbek border guards in 
September 14, 2019 [3], for the first time in the history of the prison system of 
Kazakhstan transportation of prohibited items to the colony by an unmanned aerial 
vehicle  (hereinafter UAV) in September 4 of 2020 [4], the arrest of a resident who 
launched an unregistered UAV over a military unit in Aktobe in June 13, 2022 [5] and 
other events that took place indicate that the careless or deliberate use of UAVs can 
pose a serious threat to the airspace of airports, power plants, civilians, organizations, 
and even the entire state. 

The infrastructure may experience risky incidents such as information privacy 
violations, aircraft collisions, attacks on significant objects, allowing the transportation 
of illegal substances, etc. if the intrusion of drones into specially protected areas is not 
identified early on and stopped in time. In order to prevent such dangerous incidents, 
it is important to establish a reliable detection system that will detect drones in real 
time in the territory of important infrastructures. Usually, conventional radar and radio 
frequency technologies are frequently utilized in the preparation of UAV target 
detection and tracking systems; however, the accuracy of these sensors reduces when 
the UAV flies in the area where the signal is obstructed or the received signal is 
blocked. Due to their accessibility and relative accuracy in object detection from a 
sufficient distance, optical camera sensors are useful in the development of effective 
detection systems that identify the UAV as soon as it approaches the specially protected 
area and present the visual output result (bounding box) to security personnel in real 
time. 

In the field of communications, some possible UAV incidents may also occur, 
such as: 

- Failure of telecommunication systems due to interference from drones; 
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- Violation of safety rules when using drones can lead to accidents that can 
damage telecommunications equipment, such as communication towers or cables, 
leading to communication interruptions and network failures, as well as damage to 
equipment and endanger the safety of personnel. 

- Unauthorized use of drones to perform espionage operations or store classified 
information transmitted over communication networks. 

Thus, the development of technologies for detecting and preventing the use of 
UAVs is becoming relevant due to the increase in the number of dangerous incidents 
associated with drones in various fields. The above situations require a deeper study of 
drone detection and avoidance systems, which leads to the development of this research 
field. 

Research problem. The task of real-time UAV object detection in accordance 
with camera system requirements while maintaining a balance in accuracy and speed 
is challenging due to the territorial size and location of the specially protected area and 
the fact that UAVs are moving objects and move quickly in frames, which makes the 
detection task more difficult. In order to ensure effective detection, an important 
requirement is that the model must be able to identify the drone from a distance, as it 
approaches the area of a specially protected infrastructure, respectively, the dimensions 
of the drone in the images are very small in terms of pixels.  

Research aim. Research and development of a real-time UAV detection system 
using smart camera sensors. 

Research objectives. The following tasks must be completed in order to achieve 
research aim: 

1. In-depth literary review of UAV detection methods based on smart sensors. 
2. Choosing a camera sensor, taking into account the territory of the special 

protected area and the camera parameters, fixing the position of the camera sensor to 
detect the object with sufficient accuracy. 

3. Data preparation and pre-processing, which allows the neural network to 
identify drones more accurately. 

4. Theoretical description of the proposed detection system. 
5. Research and development of a real-time and accurate drone detection system 

with a static background. 
6. Research and development of a multiple sensor fusion system to avoid blind 

spots and reduce drone confusion with birds.  
The object of research is UAV detection system.  
The subject of research are primary visual data preparation and video signal 

processing methods, the structure and algorithms of neural networks used in object 
detection and classification, sensor fusion methods. 

Research methods. To solve the research tasks the following methods were 
solved: Digital signal processing methods, machine learning theory, object detection 
methods, image classification methods, as well as sensor fusion techniques etc.  

The scientific novelty of the work. The scientific novelty of the research lies in 
the development of a smart sensor fusion system using voting method for multi-angle 
detection of UAVs. 
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The following scientific statements are to be defined: 
1. Data acquisition, processing and preparation methods. 
2. Moving object detection methods and algorithms. 
3. Moving object classification methods and algorithms. 
4. Sensor fusion methods and algorithms. 
5. Experiments, results and discussions. 
The theoretical significance of the research results. This research can be used 

as a methodological guide for camera sensor selection, data collecting and 
preprocessing, neural network model selection, and training by anyone wishing to do 
visual camera sensor-based UAV detection. 

The practical significance of the research results. The proposed sensor fusion-
based unmanned aerial vehicle recognition model serves as the basis for the future 
work of the researcher under the Zhas Galym project AP14971031 «Research and 
implementation of a bimodal system for real-time detection of unmanned aerial 
vehicles» (priority direction «9. National security and defense»). That is, it is the basis 
for the development of a bimodal system that combines LiDAR sensors and cameras 
in real time to detect unauthorized penetration of flying objects into specially protected 
infrastructure (Appendix A). 

Personal contribution of the author. The dissertation is the original work of 
the author, all the results of scientific research are obtained by the author herself. 
Approval of tasks to achieve the goal of the study, analysis of research methods and 
implementation of the proposed system, analysis of the results of scientific research 
were carried out by the author herself and under the guidance of a domestic supervisor 
and a foreign scientific consultant. 

The validity and reliability of scientific provisions, conclusions and 
recommendations are confirmed by publications in journals included in the list of 
scientific publications recommended by the Committee for Control in Education and 
Science of the Ministry of Education and Science of the Republic of Kazakhstan, and 
the Web of Science and Scopus database; approbation in a foreign international 
scientific and practical conference. 

Approbation of research results. The main scientific results of the dissertation 
research outlined in the dissertation are presented at the international conference «The 
Fourth IEEE International Conference on Robotic Computing (IRC)», and the results 
are published in the IEEE Xplore proceedings: 

1. Detection of loaded and unloaded UAV using deep neural network // 2020 
Fourth IEEE International Conference on Robotic Computing (IRC), Taichung, 
Taiwan, 2020, pp. 490-494, DOI: 10.1109/IRC.2020.00093. Conference Paper. 

2. Deep residual neural network-based classification of loaded and unloaded 
UAV images // 2020 Fourth IEEE International Conference on Robotic Computing 
(IRC), Taichung, Taiwan, 2020, pp. 465-469, DOI: 10.1109/IRC.2020.00088. 
Conference Paper. 

Publications. Based on the main scientific results of the dissertation work, 6 
publications were published, including 1 journal article in publications indexed in the 
Scopus and Web of Science databases, 3 articles in publications recommended by the 
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Committee for Quality Assurance in Science and Higher Education of the Ministry of 
Science and higher education of the Republic of Kazakhstan and 2 papers in the 
proceedings of international conferences. 

Acknowledgements. I would like to express my gratitude to professors Eric 
Matson, Lyazzat Ilipbayeva and Akhan Almagambetov for giving academic guidance 
and strong support throughout the PhD dissertation work. It was a real delight to work 
at KSQ lab with supportive colleagues and other fellow PhD students under Professor 
Eric Matson's guidance. My great appreciation to the SafeShore project for supporting 
Drone-vs-Bird challenge dataset. Finally, I would like to thank my best friend-
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long period. 

Structure and scope of the dissertation. The thesis consists of 88 pages of 
typewritten text, including normative references, definitions, designations and 
abbreviations, an introduction, 5 primary chapters, a conclusion and the list of 
references. The primary chapters contain 63 figures and 10 tables, as well as 75 cited 
references. The work begins with an introduction part, where the author gives a general 
description of the work, the relevance of the study, the problems and provisions on 
defense. In Chapter 1, UAV object detection technologies are explained in detail, and 
a huge number of literature reviews have been conducted on UAV detection based on 
visual data recognition. Chapter 2 describes the steps for preparing UAV visual data 
including video signal acquisition and digital image processing techniques. Chapter 3 
describes moving object detection and classification methods using for visual UAV 
detection and classification tasks. Chapter 4 presents the proposed real-time drone 
detection system in the scene with a static background. Chapter 5 presents the 
developed model and algorithm of a smart sensor fusion system using voting method 
for multi-angle UAV detection and classification. The conclusion discusses the 
analysis and outcomes of research work, its future directions. 
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1 BACKGROUND 
 
1.1 Security threats of unmanned aerial vehicles 
The flight of UAVs over the defense objects is a violation of the law "On the use 

of airspace and aviation activities of the Republic of Kazakhstan", as well as the 
registration of unmanned aerial vehicles in the state register is mandatory. Owners of 
UAVs in the Republic of Kazakhstan can obtain a written permission to use the 
airspace from the Civil Aviation Committee only after registering the UAV and 
indicating the direction of flight [4; 5]. Nevertheless, licensing of UAVs is unlikely to 
prevent the actions of terrorists. After all, although law-abiding citizens register and 
license their drones in the state register, it is quite possible that terrorists and other 
criminals buy UAVs abroad and continue to use them freely inside the country. 
Therefore, recently, the research on the UAV detection system has been developing 
rapidly.  

In recent years, due to the continuous development of technology the technical 
capabilities of unmanned aerial vehicles (UAVs), publicly known as drones are being 
improved, as well as the scope of their application is expanding. Long-range flight, 
payload options, mobility and compactness have increased the potential use of drones 
from personal to military use [6]. Due to their low cost and ease of use, drones play an 
important role in modern life, becoming an assistant in delivering packages and 
medicines, filming various video content, monitoring crowded places, providing first 
aid, etc. Nevertheless, the problem occurs when drones are used in Illegal purposes 
posing a threat to society, such as smuggling (transporting illegal substances across 
borders, restricted areas, prisons), illegal video surveillance, drone collisions with 
flying aircraft, etc., which requires timely detection of UAVs entering protected areas 
for illegal purposes. 

Considerate use of UAVs. Not all the UAVs pose a danger to society. For 
example, small-sized and shorter-range drones are often bought by young people and 
amateurs, as well as for entertainment purposes, such as shooting images and video 
content for social networks. Usually such short-range drones are controlled by 
smartphones via Wi-Fi, and this can limit their service radius to around tens of meters. 
As well as their small size limits the ability to transport the payload. And the poor wind 
resistance of some small-sized drones allows them to be used exclusively indoors.  

Although such drones for image and video filming pose an issue in terms of 
confidentiality, they do not pose large-scale problems such as attacks, collisions or 
smuggling [7]. 

Malicious use of UAVs. UAVs are usually equipped with a video camera and an 
an image transmission system, and drones costing about $ 1,000 can stay in the air for 
half an hour and fly several kilometers away from the operator. This, in turn, allows 
terrorist groups to use the drone as a means of surveillance, collecting information from 
the intended object, as well as a vehicle for the delivery of explosives or poisonous 
substances.  

In the middle of the 20th century, the United States first began using 
reconnaissance drones in Vietnam. However, only in the 21st century UAVs have 
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become full-fledged weapons. After the September 11 attacks, the United States began 
a large-scale fight against terrorists around the world. For terrorist groups, the tracking 
function is an important component as they first send a drone to collect information 
and then carry out an attack to create attack coordinates and organize an attack plan 
before the attack. Terrorists can destroy targets not by special military drones, but by 
loading a colorless toxic liquid such as sarin, which narrows the pupil and paralyzes 
the nerves, instead of a field chemical on an agricultural multicopter intended for the 
chemical treatment of ordinary fields, or by installing a firearm on a multicopter and 
firing accurate shots at the target [7]. 

Parameters of dangerous drones. The main parameters of dangerous drones 
used carelessly or intentionally (figure1): 

– the ability to fly long-range distances; 
– carrying capacity of heavy payloads; 
– resistance to different weather conditions and wind; 
– unsafe design of UAVs (UAVs with open propellers). 
 

 
 

Figure 1 – Parameters of dangerous UAVs 
 

UAV threats. The deep emphasis on the UAV threat categories allows us to 
better understand the factors that make up the unmanned aerial vehicles that pose the 
most danger to society. The threats posed by drones can be divided into the following 
important categories (figure 2).  

The first category of potential threats is a drone attack. Since explosives, as well 
as biological and chemical weapons can be carried by unmanned aerial vehicles. Such 
explosives can be used to attack a number of targets, including individuals, 
organizations, and even nations. However, for such attacks, criminals would require 
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drones, which can accurately reach targets, fly long distances and with heavy payload 
capabilities to carry the necessary weapons [7]. 

 

 
 

Figure 2 – The main UAV threat categories 
 
Launching a remote-controlled drone, either accidentally or intentionally, in 

close proximity an aircraft or in its flight path may endanger the safety of passengers 
and crew, as well as cause property damage [7; 8]. In turn, this is the next category 
of threat from unmanned aerial vehicles, which is an example of a collision. It is also 
clear that the launch of UAVs directly into public places, such as a crowded stadium, 
is also dangerous, especially if the drone is large in size and heavy, or the drone is 
loaded with heavy explosives, posing a serious threat to society. 

Drones equipped with powerful cameras, in turn, can be used to remotely spy 
on individuals, enterprise companies and government agencies. Contrary to privacy 
claims, this concern could be an example of drone threat such as invasion of privacy 
or espionage. To carry out such illegal acts, drones have to be able to spy into a 
window or gather information about an important object, as well as illegally film 
sports events. All of these activities require drones with embedded cameras, long-
range and weather-resistant abilities.  

Frequent incidents of drug smuggling using drones by creating a huge problem 
for prison officials and border patrols, as well as the smuggling of weapons or other 
illegal items without attracting the attention of security services can serve as an 
example of the next category of threats from unmanned aerial vehicles such as 
smuggling. Drones used for these purposes must respond to parameters such as the 
ability to carry heavy loads to their destination, fly long distances, and operate in 
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extreme conditions regardless of different weather conditions in the border territory 
[9]. 
 

1.2 Drone detection technologies 
Drones have found innovative applications and use cases for everyone from 

children and enthusiasts to police officers and firemen. Given the widespread use of 
drones and their considerate and malicious potential, it is necessary to accurately detect 
and classify them as permitted or not, as well as track their route. The UAV detection 
system is usually deployed close to the region of interest. The detection system can 
monitor the drone as it enters or is expected to enter the no-fly zone and determine if it 
is a friendly drone or an unauthorized intruder. The system then has the option of 
alerting an operator or applying an automated policy. The frequent use of unmanned 
aerial vehicles (or drones) for commercial and entertainment purposes has recently 
stimulated research in the field of UAV detection systems. According to the industrial 
and academic studies carried out so far, UAV detection system uses non-optical 
technologies using radar, microphones for detecting acoustic vibrations, radio 
frequency (RF) sensors and optical technologies (visible spectrum and thermal infrared 
camera sensors) that detect drones based on features obtained from images and videos 
as shown (figure 3). As well as these drone detection sensors are divided into primary 
and secondary categories by the Federal Aviation Administration (FAA). 
 

 
 

Figure 3 – Different UAV detection technologies  
 

Note – Compiled according to the source [10] 
Primary sensors, as a rule, are capable to detect drones with sufficiently high 

accuracy and low false positives to function as standalone (autonomous) solutions. 
That is, they will not need data from other types of sensors to confirm detection. 
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There are two types of primary sensors: 
1. Radar. 
2. Radio frequency (RF). 
To reliably identify drone threats with a low false positive rate, secondary 

sensors require additional data from other kinds of sensors. These additional types of 
sensors can be used to improve detection accuracy or provide more detailed 
information about drone hazards, however, they cannot be used as standalone detection 
systems. Examples of secondary sensors are the following types of sensors: 

1) acoustic; 
2) optics (camera)/infrared. 
The advantages and disadvantages of each of the listed drone detection systems 

will be listed below. 
 

1.2.1 Non-optical drone detection technologies 
Detection of flying objects based on Radar. In both military and civilian 

applications (such as aviation), radars (Radio Detection and Ranging) have historically 
been used for aircraft detection, as a result, they are frequently seen as a reliable sensing 
instrument that comes to mind when discussing UAV detection. The components of 
any radar system are a transmitter that generates EM (electromagnetic waves) in the 
radio or microwave spectrum, transmitting and receiving antennas, a receiver and 
processor that determine the objects’ properties [9]. In a radar, a radio wave is 
transmitted (usually in the microwave frequency range), and the radiolocation system 
captures reflected radio wave from the physical object (i.e., aircraft or UAV). To 
determine the presence, distance (range), radial velocity and direction of object, the 
receiver examines the Doppler shift brought on by moving objects [9; 10-12]. The 
schematic structure of radar-based drone detection method is illustrated below (figure 
4) [12, р. 42635-42658]. 

There are two types of radars: active and passive radars. To find objects, active 
radar broadcasts a signal and receives the reflected signal. In contrast, passive radar 
relies on other signal sources, including cellular signals, FM radio, analog television, 
and digital audio and video broadcasting and does not transmit any kind of signals 
itself. The main benefit of radar-based detection sensors over other techniques are its 
superior detection and localization accuracy [12, р. 42635-42658]. Radars are able to 
identify UAVs with noise suppression, unlike acoustic or RF detection. Visual 
circumstances including rain, fog, dust, etc. generally have no effect on the detection 
accuracy. Hence, radars are frequently regarded as the best option when great precision 
and reliability are sought. Yet, there are several practical limitations and financial 
concerns to keep in mind while developing and implementing a radar that is appropriate 
for detecting drones. First of all, as drones have a smaller radar cross section (RCS) 
than airplanes, traditional radars are less effective in detection of tiny objects. 
Secondly, drones that are hovering or moving slowly could be mistaken for stationary 
reflecting objects by radars. Thirdly, in terms of classification ability, radar sensors 
frequently may not accurately determine whether the detected object is a drone or 
another flying object when performing the task of distinguishing between small objects 
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such as birds and drones [11, p. 250-15]. Although Radar is a sensor that is less affected 
by weather and can simultaneously detect and track multiple objects at long distances, 
they do a poor job of recognizing a swarm of drones flying erratically and at different 
speeds. As well as, they can only determine the general direction of an object, and 
cannot provide detailed information about its shape or size. Finally, the high cost of 
radar sensors and the complexity of the installation process are ineffective in preparing 
an affordable anti-radar system [10; 11, p. 250-3; 12, p. 42639]. 
 

 
 

Figure 4 – Schematic structure of radar-based drone detection method  
 

Note – Compiled according to the source [12, p. 42641] 
 
Detection of flying objects based on acoustic sensors. A fairly simple technique 

for detecting and tracking tiny UAVs is acoustic processing techniques. After all, we 
are all too acquainted with the recognizable buzzing sound that makes a tiny UAV 
flying nearby. Nevertheless, there is more to these acoustic techniques than meets the 
eye. Acoustic antennas are able to recognize the distinct noise made by the drone's 
propellers and detect the UAV's presence in the region of interest. Examples of current 
studies and publications that focus on UAV detection using audio sensors may be found 
in [12, p. 42640; 13-21]. The distinctive acoustic signals (sound waves) produced by a 
drone's rotating blades can be utilized to locate and recognize a particular UAV model 
[12, p. 42640]. Several drone parts, such as the engine, wind, or propeller blades 
generally produce the noise. Propeller blade sound, on the other hand, has a 
significantly larger amplitude and is frequently employed for detection. Many studies 
have recommended the use of a microphone array to recognize UAVs by analyzing the 
noise of the rotors since acoustic detection methods are not reliant on either the target 
UAV's size or LOS (line of sight). Several studies described ways to detect drones by 
comparing a drone's recorded acoustic signature with other signatures kept in a 
database of previously gathered sound signatures. A drone's engine and propellers 
generate acoustic waves in the frequency range of 20 Hz to 20 kHz, creating the 
vehicle's acoustic signature. This information may be captured by a single microphone, 
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and when compared to a database of audio characteristics, it can differentiate the drone 
from other objects. Therefore, the UAV sound collected using acoustic sensors such as 
microphones is processed to match with the UAVs ID in a database, as well as this 
procedure is called as fingerprinting [14]. The database normally holds the acoustic 
fingerprints (also known as drone IDs) of every drone. Either traditional methods or 
cutting-edge ML algorithms are used to process the acoustic signals. The schematic 
structure of fingerprinting-based UAV sound detection method is illustrated below 
(figure 5) [14]. 

 

 
 

Figure 5 – Acoustic sensor-based drone detection system  
 

Note – Compiled according to the source [14] 
 
Using acoustic signals to detect UAVs can be somewhat less expensive (but the 

cost rises as accuracy requirements rise). It has the benefit of functioning normally in 
dim light and a variety of weather conditions, such as rain, fog or dust etc. Moreover, 
it does not require LOS to the target UAV Acoustic systems work best in isolated 
locations with minimal background noise. However, it is sensitive to ambient noise and 
climatic conditions due to wind or temperature, and usually has a range determined by 
the size of the microphone grid. When there is background noise, this method's 
accuracy drastically decreases and it becomes impossible to tell if a drone is using a 
sound-suppression device. The detecting range varies depending on the surroundings 
and is often just about 200 meters. Therefore, the decrease in the accuracy of detection 
of acoustic sensors in noisy environments and their dependence on wind and noise 
indicate the inefficiency of using these sensors as the main detection system. 

Radio Frequency detection. Another effective method of drone detection is 
based on radio frequency (RF) detection. Radio frequency sensors can detect energy 
emitted by electronic devices on drones, such as radio transmitters or GPS receivers. 
The presence of UAVs in the target region may be ascertained using RF scanner 
technologies that capture wireless signals. Sensing the RF transmission between a 
drone and its ground operators is one of the most popular methods for UAV detection 
in no-fly zones. This technique uses RF sensors acting as receivers to search for RF 
communication channel signals. Recent research and publications that concentrate on 
UAV detection and classification utilizing RF sensors may be found in [22-26]. The 
RF sensors are made to recognize the RF frequency bands that UAVs use to 
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communicate with their ground controllers and control them. To connect with the 
controller, drones commonly employ RF signals between 2.4 and 5 GHz [22, 
p. 114575]. Wi-Fi-enabled drones operate at a frequency of 5.4 GHz, while 5G drones 
utilize the range of 3.5 GHz. Other less popular bands include the range between 1.2 
GHz and 1.3 GHz [23]. Hence it is possible to passively listen to the signals sent 
between a drone and its controller using an RF sensor (also known as a scanner). RF 
signal scanning may be done in two different ways. While using the first technique, the 
receiver listens to and decodes the packets being sent between the UAV and its 
controller. As the entire packets are decoded, this approach provides more thorough 
information including the identity, position, and speed of the drone as well as data 
included inside the packets, such as video feeds. Nevertheless, this technique demands 
network snooping, which is illegal in many countries. In the second technique, the RF 
receiver does not perform decoding the packets, but just captures the RF signals 
consisting of amplitude and phase, as well as looks for certain patterns in the captured 
data. By detecting the UAV presence, predicting its model, and estimating its position, 
this technique delivers only a limited amount of information. The second approach is 
mostly utilized to UAV detection due to regulatory restrictions. 
 

 
 

Figure 6 – RF sensor-based system module for UAV detection 
 

Note – Compiled according to the source [24, p. 274-3] 
 
Below in (figure 6) is illustrated the schematic structure of RF sensor-based 

UAV detection system consisting of the receiver antenna, UAV, computer and 
controller [24, p. 274-3]. RF signals are used by a UAV to communicate with the 
ground controller so that these signals can be utilized for detection.  

Below is illustrated the infrastructure monitoring using an RF-based UAV 
detection system under Bluetooth and WiFi wireless interference (figure 7) [26]. In 
order to detect UAVs, the UAV controller signals are utilized. Bluetooth, WiFi, and 
UAV controller function at 2.4 GHz frequency spectrum. RF signals from WiFi, UAV 



19 
 

controller and Bluetooth device are intercepted using an antenna. Different wavelet 
transform categories were used to extract the features from the processed captured 
signals, as well as these processed signals were used to detect and classify UAV targets 
based on CNN classifier SqueezeNet [26, p. 101569-27].  

 

 
 

Figure 7 – Infrastructure monitoring using an RF-based UAV detection system under 
Bluetooth and WiFi wireless interference  

 
Note – Compiled according to the source [26, p. 101569-8] 
 
The ability of detection and localization of drones is made possible by the RF 

signal, which is a key feature of drones. Nevertheless, whether the drone is used in a 
partially or totally autonomous mode, RF-based solutions are ineffective. Moreover, 
all of the currently used RF-based detection methods have poor performance for low 
signal-to-noise ratios [26, p. 101569-4]. As well as, the detection range of drones can 
be limited by RF technology, and RF sensors are susceptible to interference from other 
electronic devices such as cell phones, radios, or televisions. This can lead to false 
positives and make drone detection difficult. 

 
 
1.2.2 Optical drone detection technologies 
Detection of flight targets using infrared camera sensors. Certain conditions such 

as night time, poor visibility, or urban environments poses difficulties in detecting 
flying UAVs. Flying objects detection based on the heat emitted by the drone's internal 
components using thermal imaging infrared cameras has been conducted in several 
studies [27-28]. Thermal infrared cameras are able to detect small temperature 
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fluctuations at the level of tens of µK [27, p. 183]. Thermal infrared sensors produce 
images like conventional cameras, but use light in the 14 µm wavelength range instead 
of visible light in the 450-750 nm wavelength range. Physical components such as 
batteries, motors emit a significant amount of heat and can be recognized/detected 
using thermal infrared cameras. In [27, p. 184] the authors tested how low-cost and 
mobile the FLIR Lepton micro-camera, which provides 80×60 pixels video, installed 
on a Raspberry Pi, can be used to monitor air traffic or prevent collisions of multi-rotor 
unmanned aerial vehicles at night time. During the experiment, different-sized drones 
such as DJI Phantom 4, Parrot AR. Drone 2.0 and a custom hexacopter were launched 
at a test site with a length of more than 100 m. All three drones were launched at a 
constant speed of 2 m/s at an altitude of about 10 m above ground level in the absence 
of wind on a warm summer night. As a result of the study, the authors found that 
batteries are the main sources of heat, unlike engines, which consume the most energy. 
This is due to the fact that the engines cooled quickly due to the rapid air circulation 
and decreased in the thermal spectrum. The study did not use a specific machine 
learning algorithm, and drone detection and classification was carried out using human 
observation of output video streams in real time. In [28, p. 4450] the authors used a 
convolutional classifier consisting of ResNet-18 backbone network, pre-trained in the 
ImageNet classification database and two 1×1 and 4×4 neural layers trained online, 
which allows them to distinguish objects from the background for reliable tracking of 
infrared drones in real time. To test the effectiveness of the proposed method, the 
authors conducted experiments with several well-known algorithms on the anti-UAV 
infrared dataset consisting of 100 thermal infrared video sequences covering several of 
multi-scale UAV cases. Additional application of feature attention mechanism and 
expansion search strategy to the classifier has shown that the infrared tracking 
algorithm proposed by the authors is more resistant to real-time problems in the 
infrared scenes compared to the SiamFC and ATOM algorithms.   

UAV detection using camera sensors. As explained above various sensors based 
on radar, acoustic, visual, Radio Frequency (RF) signals are used for detection and 
classification of UAVs. Among these technologies, despite its traditional success in 
object detection and tracking, radar is considered a highly professional and expensive 
technology that requires qualified professionals capable of interpreting the visual 
results of a radar system. This complexity of radar technology and rapid progress in 
the field of Computer vision have prompted some researchers to consider drone 
detection and classification using visual data (images or videos) [29]. Computer vision 
has long been proven as an effective method for detecting and tracking UAVs in order 
to prevent air accidents [30]. Today, researchers are investigating how computer vision 
can be used as an optimal method for detecting and tracking malicious UAVs. Because 
cameras are relatively inexpensive, light weight and alternative to other sensors that 
detect objects from long distances. Another advantage of cameras is low power 
consumption. In the case of placing a sensor with a large power consumption is placed 
on board an unmanned aerial vehicle, the available flight time can be significantly 
reduced [31]. In addition, the OpenCV open source software for computer vision and 
machine learning offers more than 2,500 optimal computer vision algorithms that can 
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be easily implemented in many applications. For these reasons, Computer vision is one 
of the main methods used to detect and prevent the use of UAVs. 

Although Computer vision is considered one of the most commonly used 
methods in object detection based on image data from the camera sensor, various 
lighting and weather conditions such as fog and rain greatly reduce the detection 
accuracy of the computer vision method [31, p. 15]. As well as the fact that most drones 
are small in size and fly at low speeds and at different altitudes has made the UAV 
detection task challenging, which prompts to use sensors of the same type or different 
sensor systems when preparing an anti-drone system. 

 
1.3 Related works on visual detection of flying objects based on optical 

camera sensors  
Visual detection using hand-crafted features. In order to describe binary shapes 

(e.g., silhouettes) of drones and birds Unlu et al. [32] developed vision-based features 
called the Generic Fourier Descriptor (GFD), which is scale, invariant to displacement 
and rotation changes, able to define shapes with high accuracy. According to the 
system proposed by the authors, first, a silhouette of a moving object is obtained using 
a fixed wide-angle camera and a background subtraction algorithm, a special Region 
Growing image segmentation algorithm is used to separate the pixels of the object from 
the background, morphological operations are not applied after image segmentation 
phase in order not to lose any information about the shape, GFD is calculated after 
normalizing and centering the silhouette, and finally, GFD features are classified into 
birds and drones using a neural network of about 10,000 neurons. The authors collected 
410 drone and 930 bird images from public sources to construct a dataset for training 
their system. On the test data set, CNN showed a classification accuracy of 85.08%, 
while the proposed GFD approach showed an accuracy of 93.10%, and by calculating 
the CNN architecture and inputting the GFD feature vector before the neural network 
classification, it significantly improved the classification performance of the small 
dataset. 

Qiang Dong et al. [33] proposed a new UAV visual detection method that 
combines foreground detection and online feature classification to solve the problem 
of detecting different types of UAVs against different backgrounds. Since micro- and 
mini-UAVs have completely different external manifestations, the problem of 
detecting UAVs cannot be considered as the problem of detecting an object using a 
trained classifier. The first step in the UAV detection method proposed by the authors 
is to obtain foreground detection results from images captured by static cameras, 
foreground detection results may include dynamic background pixels, which leads to 
an increase in the level of false detection. In this case, an online classification of objects 
was proposed to obtain detection results with a high probability of the presence of 
UAVs. The histogram of oriented gradients (HOG) was constructed based on the 
results of foreground detection to obtain information about the edge and local shape. 
To evaluate their method, the authors conducted experiments with the previous ViBe 
(Visual Background Extractor) and PBAS (Pixel Based Adaptive Segmentator) 
background detection algorithms for visual UAV detection. The results of the 
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experiment showed that the method proposed by the authors provides significantly 
better detection accuracy than the other two algorithms for detecting micro- and small 
unmanned aerial vehicles. 

Boddhu et al. [34] presented a collaborative sensor platform consisting of an 
intelligent smartphone application that uses the appropriate sensors on the device to 
capture drone attributes such as flight direction, shape, color. The proposed platform 
was developed by combining an intelligent processing module based on a sensor cloud 
and a probabilistic model that can evaluate and predict the probabilistic flight paths of 
a dangerous drone based on a set of geographically distributed data points. As an 
alternative to the RADAR airspace surveillance system, this system has been tested 
outdoors and shown to be effective in providing a real-time alerting mechanism to 
prevent or eliminate potential damage from detected hostile drones, however, flight 
path estimation by showing a low statistical error with the actual flight path requires 
improvements and additional testing to be comparable. 

Wang et al. [35] proposed a simple, fast and efficient system for detecting 
unmanned aerial vehicles based on video images captured by static cameras that cover 
a vast area and are very cost-effective. The method of temporal median background 
was used to detect moving objects in a video sequence captured by a static camera, and 
then Global Fourier Descriptors and local HOG features were obtained from images of 
moving objects. As a result, the combined FD+HOG features were sent to the SVM 
classifier, which performs classification and recognition. To prepare the data set, the 
authors converted 10 videos of the Dajiang Phantom 4 quadcopter drone, taken under 
various conditions, into a series of images and manually annotated drones as a positive 
sample, and the leaves, buildings, etc. other objects as negative samples. FD (Fourier 
Descriptor), HOG (Histogram of Oriented Gradients) and the proposed FD+HOG 
algorithms were used to recognize "drone" and "no drone" objects, and as a result of 
the experiment, the overall recognition accuracy of the proposed method was 98%. As 
well as, based on the experimental results the authors proved that the proposed 
FD+HOG algorithm performs birds and drones classification task with higher accuracy 
than the GFD (Generic Fourier Descriptor) algorithm even with a small dataset. 

In [36], the authors proposed a system for detecting and tracking unmanned 
aerial vehicles using a stationary and Pan-Tilt-Zoom (PTZ) camera. The authors 
considered several background modeling algorithms. According to the results of the 
experiment, the GMM (Gaussian Mixture Models) algorithm showed the best result in 
terms of accuracy. Object features were extracted by combining the drone predictive 
models trained by GMM, adaptive model, and principal component analysis to model 
the object and extract relevant features. In future research, the authors will consider the 
problem of tracking the violation of very bright colors due to reflection on sunny days 
and the fact that the system cannot separate the object from the background. 

Amy R. et al. [37] analyzed many methods of detecting and monitoring first-
class UAVs based on computer vision. According to the research paper, the detection 
of UAVs using computer vision is carried out using the categories of object detection 
and feature detection. The authors individually explained these two categories and 
conducted a literary review of each of them. Object detection is often carried out using 
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morphological filters, such as dilation and erosion. Detection of UAVs at long 
distances can give better results using morphological filters than feature detection 
algorithms. On the other hand, feature detection algorithms can provide a more detailed 
analysis of detected UAVs. Therefore, the authors plan to achieve better results in their 
future studies using a combination of morphological filters and feature detection 
algorithms. 

In [38], the authors proposed a method underlying the creation of a cooperative 
UAV autonomous landing system by detecting and locating the UAV from video 
sequences obtained from an RGB sky-directed camera. The system proposed by the 
authors consists of a multi-rotor UAV with vertical takeoff and landing capabilities and 
a helicopter mounted above a mobile robot or on a static platform. According to the 
proposed system, moving objects are first detected from an image taken from a static 
camera using the background subtraction method, the foreground is separated from the 
background, and morphological operations called opening and dilation are used to 
reduce pixels isolated from the final movements of clouds from the main foreground 
i.e. to reduce noise, since the result of background segmentation is often a set of 
separated BLOB-objects, the clustering method is used to combine each set so that it 
belongs to the same object. Since the UAV is a more chaotic pattern of movement than 
other objects (for example, airplanes and birds), the analysis of movements was carried 
out using the method of distinguishing UAVs from other objects using motion 
signatures. According to the results of the motion analysis, it was determined whether 
the object corresponded to the UAV or not. Based on all the data obtained, the previous 
positions of the UAV were tracked and the current positions were calculated. To test 
the proposed model, 12 video sets with an image resolution of 320x240, consisting of 
915 individual UAV frames, were prepared and analyzed. Each frame in the dataset 
was classified as "Moving", "Hovering", "Partially Out". The first category was 
detected when the UAV was moving at a significantly high speed, the second category 
was detected when the UAV was oscillating or moving at a significantly slow speed, 
and the third category was detected when the UAV was partially out of the camera's 
field of view. The process was repeated for various outputs: raw data obtained directly 
from single frame analysis without any tracking algorithm; using the Kalman filter; 
averaged position tracking algorithm using the output of the Kalman filter at N=5 and 
N=8. As a result of the experiment, the method proposed by the authors showed 
particularly good results in frames where the UAV fluctuates/oscillates in one place, 
and the error increases at the moments when the UAV partially disappears from the 
frame, because the exact calculation of its center is difficult. The results at N = 8 
deteriorated compared to the results at N = 5 in moving frames. While the Kalman filter 
performs well on moving frames, the average position tracking algorithm using the 
output of the Kalman filter at N = 5 proposed by the authors performs better on still 
frames. 

Visual detection using trained features or based on deep learning. Researchers 
who applied deep learning to visual data to identify UAVs fulfilled the following 
objectives: 
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a) classification of drones and birds: two labels are used to annotate these data: 
«drone» and «bird». Arne Schumann and et al. [39] proposed UAV detection 
framework that can accurately detect flying objects from long distances based on video 
images and separate UAVs and birds into appropriate classes. In the system proposed 
by the authors, depending on whether video images are captured by static or moving 
cameras, the region that may contain the object was determined by the methods of 
median background subtraction or deep learning-based RPN (Region Proposal Neural 
Network). The use of RPN has reduced the number of false positive results and made 
it possible to achieve an early warning detection system. The detected regions were 
classified into UAVs or birds using a convolutional neural network (CNN) classifier. 
To train a reliable CNN classifier, the authors prepared a dataset consisting of 3,386 
drones, 3,500 birds, and 3,500 background images. The proposed UAV detection 
system was tested and evaluated on 6 complex video sequences consisting of UAVs, 
birds and background movements at different distances. In future work, the authors 
will use temporal information to improve accuracy. 

Due to the lack of data used in training, Saqib et al. [40] conducted experiments 
to detect moving objects in video data based on pre-trained Zeiler and Fergus (ZF), 
Visual Geometry Group (VGG16) and other CNN networks Since the aim of the work 
was to identify drones and avoid confusion with birds, the authors used a Bird-Vs-
Drone dataset consisting of 5 MPEG4-encoded videos captured at different times. The 
videos were divided into 2,727 image frames on which the drones were annotated. The 
authors analyzed the performance of each network architecture in different iterations. 
As a result of the experiment, the VGG-16 architecture in combination with Faster R-
CNN showed good performance with an average accuracy of 0.66. In conclusion, the 
authors noted that by considering and annotating birds as a separate class, false positive 
factors can be minimized, allowing the trained model to accurately distinguish birds 
and drones, and improves performance. 

Aker et al. [41] solved the tasks of predicting the drone's position in video frames 
and distinguishing them from birds by adapting and adjusting the YOLOv2 algorithm, 
a single-stage object detection method based on deep learning. To solve the problem 
of lack of data during training the network, the authors proposed an algorithm for 
creating an extended artificial dataset by combining background-subtracted real 
images. The authors combined the Bird-Vs-Drone dataset and artificial dataset and 
divided them into training (85%) and validation (15%) parts. Precision-recall curves 
were used to evaluate the network. In the proposed adjusted version of YOLOv2, the 
Precision and Recall values reached about 0.9 simultaneously. 

Celine Cray et al. [42] proposed a spatio-temporal semantic segmentation 
method using two convolutional neural networks that localize potential objects using a 
U-Net semantic segmentation network and classify the detected object using a ResNet 
instead of SSD detector to solve problems detecting very small objects. The difference 
of the proposed system from the Faster R-CNN object detection algorithm is that the 
object detection and recognition paths are carried out in two separate networks to 
correctly manage the network for small objects, and the tracking algorithm is used to 
filter false positives and false negatives based on continuity. time. The dataset used 
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was 11 MPEG4 encoded videos from the Bird-Vs-Drone dataset, plus many additional 
drone and bird videos. Birds in all videos were semi-manually annotated and areas 
annotated with bounding boxes were converted to segmentation masks using 
background subtraction. One-, three-, and seven-channel configurations were 
considered, and experimental results showed that the greater the number of input 
channels, the better the network can handle temporal aspects and distinguish very small 
drones from the background or birds. The difference between the proposed system and 
the Faster R-CNN object detection algorithm is that the object detection and 
recognition paths are carried out in two separate networks for the correct management 
of the network for small objects, and the tracking algorithm is used to filter false 
positives and false negatives based on time continuity. The dataset used was 11 
MPEG4 encoded videos from the Bird-Vs-Drone dataset, as well as many additional 
videos of drones and birds. Birds in all videos were annotated semi-manually, and 
regions annotated with bounding boxes were converted to segmentation masks using 
background subtraction. One-, three-, and seven-channel configurations were 
considered, and experimental results showed that the higher the number of channels in 
the input, the better the network can handle temporal aspects and distinguish very small 
drones from the background or birds. 

In [43] the authors proposed adding a deep Super-Resolution technique to the 
UAV detector, which gives the possibility of image enlarging. That is, small drones 
flying in the sky from a far will be magnified and further enhanced so that they can be 
detected by the DNN detector. To test how the Super-Resolution technique can 
improve the detection result of remote UAVs by affecting the weights and the detector 
learning module, and not just the pre-processing phase of the object detection model, 
the authors examined the full DCSCN (Deep Residual CNN with Skip Connection and 
Network in Network) consisting of feature extraction and reconstruction networks and 
its compact version c-DCSCN. The Faster-RCNN detector was trained using a large 
dataset with an appropriate number of annotated birds from short and long-range drone 
footage provided by the organizers of the WOSDETC Drone-vs-Bird Detection 
Challenge, as well as other publicly available datasets. The proposed detector was 
trained to predict three classes classified as "UAV", "bird" and "other objects". 2814 
randomly selected frames were used as a validation set to tune the detector's 
hyperparameters. Experimental results show that although DCSCN is only slightly 
better than c-DCSCN in terms of Recall results for all clip sequences, the reduced c-
DCSCN model is effective for real-time applications with less computational time. 

In [44] the authors considered the problem of detecting small drones in a remote 
video surveillance system using popular and advanced deep learning based object 
detection methods, such as Faster R-CNN based on Inception v2 and ResNet-101 base 
architectures and SSD based on Inception v2 base architecture. A total of 8771 frames 
were extracted from 11 MPEG4 encoded videos in the Bird-Vs-Drone dataset. The 
time when the drone was close to the camera, i.e. large size, and cases when the drone 
was far from the camera, i.e., small size, were considered for each algorithm, and 
according to the results of the experiment, in the first case, all algorithms were able to 
detect the drone, and in the second case, when two drones simultaneously appeared in 
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the frame at a long distance, Faster R-CNN based on ResNet-101 was able to 
successfully detect both drones, while Faster R-CNN based on Inception v2 was able 
to detect only one of the drones. SSD, on the other hand, had a poor ability to detect 
both long-range drones and tiny objects. Due to the fact that the authors performed the 
detection offline, the detection time was not taken into account, however, in their future 
work, they will consider the detection time as a key indicator for evaluating the 
effectiveness of the proposed model in real-time detection of the drone. The difference 
between the proposed system and the Faster R-CNN object detection algorithm is that 
the object detection and recognition paths must be performed in two separate networks 
for proper network management with respect to small objects, as well as in the use of 
a tracking algorithm to filter false positives and false negative results based on time 
continuity. 11 MPEG4 encoded videos in the Bird-Vs-Drone dataset were used as data 
sets, as well as many additional videos about drones and birds. The birds in all the 
videos were partially annotated manually, and the areas annulled by the bounding box 
were transformed into segmentation masks by the background subtraction method. 
Configurations with one, three and seven channels were considered, and experimental 
results showed that the more channels at the input, the better the network handles 
temporal aspects and can distinguish very small drones from background or avian ones. 

In [45], the authors proposed a multi-level UAV detection algorithm based on 
the CNN model, which distinguishes UAVs from birds and background obstacles in a 
very wide range of static and moving video cameras. The proposed model was trained 
using frames from the Purdue UAV and DronevsBird Detection Challenge 2019 
datasets, which include drones both above and below the horizon, short and long range 
drones, drones taken from moving and static cameras. To evaluate the performance of 
the proposed method in different observation situations, 5 video sets of the Drone vs 
Bird Detection Challenge 2019 dataset (model evaluation in static camera scenarios) 
and 5 video sets of the Purdue UAV dataset (model evaluation in moving camera 
scenarios) were used. As a metric for evaluating the proposed method on two different 
datasets, the F-1 score was calculated separately for cases with and without frame 
difference in the proposed system. According to the results of the experiment, it was 
shown that using the frame difference for the proposed method for videos taken from 
a static camera gives an effective result, and for videos taken from a moving camera, a 
good result can be obtained without using the frame difference for the proposed system; 

b) drone detection: two labels are used to annotate this data: «drone» and «no 
drone». Manjia Wu et al. [46] developed a video-based real-time drone detector using 
deep learning. Since training a reliable detector requires a large number of training 
images, during the research, the authors created a dataset that was semi-automatically 
labeled with KCF (Kernelized Correlation Filters) tracker instead of manual labeling. 
The KCF tracker-based semi-automatic data set labeling method allowed to speed up 
the pre-processing process of the trained images. The authors improved the YOLOv2 
(You Look Only Once) deep learning model by changing the resolution structure of 
the input images and adjusting the anchor box size parameters. To obtain the detection 
network, the authors removed the last convolutional layer of Darknet19, which was 
pre-trained with a set of standard ImageNet 1000 classifier, and added three 3x3 
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convolutional layers with 1024 filters and one 1x1 convolutional layer with 30 filters 
at the end of the network. The USC drone dataset and the KCF-tracker-labeled Anti-
Drone dataset were used to train the network. 2 Gb and 4 Gb GPU-RAM configurations 
were used to verify the real-time performance of the detector and low power 
consumption. Processing speed with GPU-RAM 2 GB reached 19 FPS, while GPU-
RAM 4 GB showed processing speed 33 FPS. By conducting various experiments, the 
authors achieved a good result of real-time detection with the proposed detector at an 
affordable price of the system. 

Jihun Park et al. [47] considered six state-of-the-art convolutional object 
detectors for real-time UAV detection and tracking system in terms of accuracy and 
speed using using a Pan-Tilt-Zoom (PTZ) camera. According to the authors, the main 
challenges of the system are the small size of drones and the creation of a real-time 
detection model to track drones through panning, tilting and zooming actions. The 
drone dataset captured video of 11 different multi-rotor drone models in different 
views, at different distances and under different background conditions, from captured 
videos were taken ten image frames per second and manually labeled a total of 9525 
multi-rotor drone images. The results of the experiment were analyzed separately for 
accuracy and speed. Since the vast majority of drones in the dataset are small in size, 
SSD performed the lowest in terms of accuracy, as SSD models give poor performance 
on small objects. According to the F-measure that considers Precision and Recall 
together, Faster R-CNN based on Inception Resnet has the highest result (74.3%), R-
FCN based on ResNet-101 (73.2%) and YOLOv2 (72.8%) showed. In terms of speed, 
the MobileNet-based SSD showed the fastest detection by detecting 20.8 frames per 
second, while YOLOv2 (13.0 fps) and Inception V2-based SSD managed to detect 12 
frames per second. Given the real-time constraints, the authors believe that these three 
fast models can be used in their system. Also, the training time of the model should not 
be too long, since the object detection model is constantly updated due to the addition 
of datasets with new models of UAV and new background conditions. The authors 
investigated the time taken to train the model for 100,000 iterations and found that the 
RFCN model based on ResNet-101 took the shortest time to train, and Faster R-CNN 
based on ResNet-101 and SSD models based on ResNet-101 took 20 hours to train 
100,000 iterations. found that little time was spent. In the experiment, Faster R-CNN 
based on Inception Resnet shows the highest accuracy, but it is the slowest in detection 
and training. Considering the trade-off between speed and accuracy, the authors 
conclude that the YOLOv2 model shows comparable accuracy to the Faster R-CNN 
and R-FCN models and is faster than these models. In future research, the authors will 
consider how different configurations, such as number of object proposals, affect speed 
and accuracy in R-FCN and Faster R-CNN models; 

c) detection, tracking and classification of flying objects (drone, bird, aircraft, 
etc.). According to Peng et al. [48] solved the problem of limited visual data by creating 
photorealistic images of unmanned aerial vehicles using the Physical Based Rendering 
Toolkit (PBRT). The authors prepared a large-scale training set consisting of 60,480 
rendered images by selecting various UAV positions and orientations, 3D models, 
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extrinsic materials, intrinsic and extrinsic camera parameters, environment maps, and 
post-processing methods of rendered images. 

This rendered dataset includes not only the anchor box of the NAC, but also the 
position of some important parts of the UAV used in complex applications such as 
mask detection and keypoint detection, and the location of all the pixels contained in 
the UAV. For drone detection, the Faster R-CNN network was fine-tuned with 
Detectron provided by Facebook AI Research using ResNet-101 base model weights. 
Faster R-CNN trained with rendered images shows an Average Precision of 80.69% 
on the test set of manually annotated UAV images, AP 43.03% when pre-trained only 
with COCO 2014 dataset and AP 43.36% on PASCAL VOC 2012 dataset, while only 
in the rendered training set showed an average accuracy of 56.28%. According to the 
experimental results, the average accuracy of Faster R-CNN detection network trained 
with rendered images was relatively higher than other methods. 

Yoshihashi et al. [49] proposed a new joint detection and tracking system using 
information about the movement of small flying objects. This system, called a recurrent 
convolutional network (RCN), consists of four modules, each of which performs a 
specific task: conv layer, ConvLSTM, cross-correlation layer, and fully connected 
layers. The authors used the system training technique by tuning AlexNet and VGG16 
without training the system from scratch. To evaluate the system, the system was first 
tested on a bird detection dataset around a wind farm and then tested on a UAV dataset 
of 20 hand-captured data to ensure that the system could not be applied to other flying 
objects. Experimental results, presented as ROC curves, show that the proposed system 
performs better than previous solutions. 

Artem Rozantsev et al. [50] proposed two approaches to detect the presence and 
danger of a flying object by classifying three-dimensional descriptors from spatio-
temporal image cubes captured by a single camera. Both approaches are based on three-
dimensional histograms of gradients (HoG3D) and CNN model. The proposed system 
starts by dividing the video frames into time segments that overlap each other by 50%. 
A multiscale sliding window is then placed to construct the st-cubes. To create 
stabilized st-cubes, a regression-based motion compensation algorithm is applied to 
each st-cube patch. Each st-cube is then classified as presence or absence of an object 
of interest (a UAV or an aircraft). To this end, the authors trained two different 
augmented tree regressors to predict the desired transition to the input patch based on 
the HoG features and two separate CNNs for the regression task based on the trained 
features. After training, the regressors are used to generate st-cubes, which are given 
as input data for motion compensation and classification. To test the performance of 
the system, the authors prepared a dataset consisting of 20 video sequences of 
unmanned aerial vehicles and 20 publicly available videos of radio-controlled aircraft. 
In testing and comparing several motion compensation methods on the test dataset, the 
CNN regression showed a detection accuracy of 0.849 on the UAV dataset and 0.864 
on the aircraft dataset. As a final step, the regressor is trained to place different image 
scales, that is, to place the detected object accurately. 

Sobue et al. [51] proposed a system for detecting and tracking objects flying over 
the city using several 4K video cameras. According to the proposed system, detection 
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of flying and non-flying objects is carried out in three stages: background subtraction 
method, comparison of KCF control method and background subtraction methods, 
classification of detected objects into six different classes using deep learning-based 
CNN image classifier. Also, SFM (Structure from Motion) was used to calculate the 
three-dimensional trajectory. Thanks to the automatic classification of flying objects, 
the authors used deep learning to classify images of birds, helicopters, airplanes, drones 
and background (noise) of the same size with about 80% accuracy. Since this result is 
not sufficient for a real system, the authors pointed out that the classification accuracy 
of flying objects can be improved by using distance information. 

Yuanyuan Hu et al. [52] proposed an improved YOLOv3 system for detecting 
unmanned aerial vehicles. The improved YOLOv3 system uses the last four scales 
instead of the last three scales of feature maps to predict the bounding box of objects, 
which allows more information about the structure and contours to detect small objects. 
In addition, to reduce the calculation, the size of the UAV in the four-scale feature 
maps is calculated from the input data, and then the number of anchor boxes is also 
adjusted. The proposed system was pre-trained on the ImageNet dataset and tuned with 
the UAV dataset. The authors prepared a dataset consisting of images of four-, six-, 
and eight-rotor UAVs from the Internet and from their own cameras. According to the 
experiment results, the mean average precision (mAP) and the number of frames per 
second (FPS) were determined, which evaluate the detection efficiency for the 
YOLOv3 and advanced YOLOv3 methods. mAP for the YOLOv3 method was 33.25, 
and mAP for the improved YOLOv3 method proposed by the authors was 37.41. 
YOLOv3 had 60.8 frames per second, while improved YOLOv3 had 56.3. The overall 
accuracy was 84% in the YOLOv3 method and 89% in the proposed system. 
Experimental results show that the proposed system provides the best detection 
accuracy and allows obtaining the most accurate bounding boxes for high-speed UAVs. 
In future work, the authors plan to improve the proposed system by increasing the 
network speed, using a more efficient k-means substitution method and applying it to 
various objects. 

In [53], an autonomous drone detection and tracking system using a wide-angle 
and low-angle camera mounted on a rotating tower is proposed. The proposed system 
describes an integrated deep learning multi-frame detection method in which a frame 
from a zoom tower camera is superimposed on a frame from a wide-angle static camera 
for efficient use of memory and time. 

In [54], the authors proposed a complex system for detecting an unknown drone 
based on machine learning using a camera installed on a surveillance drone. The 
proposed system was trained by adapting the OpenCV library Haar cascade classifier. 
2,088 positive (drone) and 3,019 negative (non-drone) samples were used to prepare 
the dataset, and the number of positive samples was increased to 7,000 using image 
manipulation. Based on these positive patterns, the 2D region where the drone is 
located in the frame is determined by the trained Haar cascade classifier, then the region 
is cut and sent to a simple CNN identifier consisting of two convolutional (Conv), two 
fully connected (Fully connected) layers to identify drone models. Due to the very long 
time spent on training for drone detection and identification with deep learning models 
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such as ResNet or Faster R-CNN, and the complexity of building the system, the 
authors separated the system into a classifier and an identifier CNN. According to the 
results of the experiment, the detection accuracy showed 89% even in several 
iterations, and the identification accuracy showed 91.6%. This system does not require 
much training data and it is very effective to use Deep CNN in classifying drone 
models. In future work, the authors plan to develop a remote assessment module to 
supplement the existing system. 

 
1.4 UAV detection using Sensor fusion techniques 
Combining sensor data from many sources is a technique known as sensor 

fusion. Compared to using individual sources, these data sources help to lessen the 
uncertainty of the information. Recent studies on UAV detection using sensor fusion 
methods may be found in [55-60]. Below different sensor fusion methods are 
presented: 

1. Fusion of data from sensors of the same type: two sensors and more than two 
sensors. 

2. Fusion of data from different types of sensors: two sensors and more than two 
sensors. By combining the data acquired from different types of sensors, it is possible 
to recognize not only the drone and its payload, but also indirect parameters such as 
the position, the direction of movement and the model of a drone [55, p. 9448699-3].  

Identity and tracking fusion has been facilitated by three general sensor fusion 
frameworks. They include postindividual sensor processing or sensor-level fusion, 
preindividual sensor processing or central-level fusion, as well as a hybrid fusion, 
which is the combination of above two methods [60, p. 317].  

The method used here is known as "postindividual sensor-processing fusion," in 
which each individual sensor processes data separately before sending the results to the 
fusion processor. In order to detect, classify, and maybe track the objects, they are 
integrated here using a sensor fusion technique. Preindividual sensor-processing fusion 
involves feeding minimally processed data from a number of sensors to a central 
processor, where they are merged, either pixel by pixel or feature by feature, and 
assessed for the occurrence of targets and their tracks using a fusion algorithm [60, p. 
317].  

The third strategy uses a combination of postindividual and prcindividual sensor-
processing. Single sensor failures, which could have an adverse effect on the 
performance of other fusion architectures, are tolerated in this case because the 
detection and tracking operations of the unaffected sensors continue through their 
individual data processing pathways and, potentially, sensor-level fusion. 

Preindividual sensor processing or central-level fusion – fusing the raw data 
(also known as early fusion). Sensor fusion is performed by fusing the raw data coming 
from multiple sensors, therefore the outputs of unimodal analyses are fused before a 
concept is learned [60, p. 317].  The general scheme of preindividual sensor processing 
or central-level fusion is illustrated in (figure 8). 
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Figure 8 – General scheme for preindividual sensor processing or central-level fusion 
 

Postindividual sensor processing or sensor-level fusion – fusion the detections. 
Sensor fusion is performed by fusing the objects detected independently on sensor data, 
therefore the outputs of unimodal analyses are fused to learn separate scores for a 
concept. A final score for the idea is learned after the fusion process [60, p. 318]. The 
general scheme of postindividual sensor processing or sensor-level fusion is illustrated 
in (figure 9). 

 

 
 

Figure 9 – General scheme postindividual sensor processing or sensor-level fusion 
 

Hybrid fusion or high-level fusion.  Sensor fusion is performed by fusing both 
objects and their trajectories, therefore the output results are relied not only on 
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detections, as well as on predictions and tracking. The general scheme of hybrid fusion 
or high-level fusion is illustrated in (figure 10). 

 

 
 

Figure 10 – General scheme for high-level fusion 
 

Chapter’s conclusion. This chapter is dedicated on detailed theoretical analysis 
started from security UAV threats to literature review of related works on UAV 
detection and classification methods based on different drone detection technologies. 
Particular attention is paid to methods for detecting and classifying UAVs based on 
visual data, since this work is devoted to the study of effective UAV detection using 
image sensors. To sum up, based on conducted state-of-the-art research, it was found 
out that the vast majority of studies aimed at detecting and classifying unmanned aerial 
vehicles based on visual data have been performed using features trained using various 
models and methods of deep learning. However, the lack of publicly available large-
scale UAV datasets is a major obstacle to research in this area, as large labeled datasets 
are required to build robust models of deep learning approaches. Due to this situation, 
researchers tried to solve the problem of limited visual data by using transfer learning 
without building the network from scratch through the methods of creating 
photorealistic UAV images, using image distortion and data augmentation techniques, 
as well as creating extended artificial datasets. In future research, some authors have 
noted that they use generative models such as GAN (Generative Adversarial Networks) 
to create artificial data similar to real data. Most of the visual data studies do not 
provide detailed information about the type of data collection device, UAV model, the 
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detection range, and the dataset that would validate the work and allow comparison 
with other works. Most of the studies have focused only on the detection efficiency of 
the UAV, and no work has focused on the classification efficiency based on the 
distance to the UAV. This issue may be an interesting area of research in the future. 
Research related to deep learning-based CNN detection is mostly based on two-stage 
Faster R-CNN and one-stage YOLO architectures. The second chapter considers video 
signal acquisition and processing methods that are crucial in the process of visual data 
preparation for neural network training.  
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2 VIDEO SIGNAL PROCESSING AND DATA PREPARATION 
TECHNIQUES 
 

2.1 Image acquisition and processing techniques  
Image processing is a technique for converting a physical image into a digital 

format and applying various operations on it to create an enhances image or extract 
relevant information from it. It is a sort of signal distribution where the input is an 
image, such as a video frame or a photograph, and the output might be another image 
or some characteristics related to the image. Figure 11 illustrates the block diagram of 
general Image Processing system.  
 

 
 

Figure 11 – The block diagram of general Image Processing system 
 
As it is seen from the above block diagram Image acquisition is the first step of 

digital image processing. An image must first be captured by a camera and transformed 
into a controllable entity before any video or image processing is started. This is the 
procedure referred to as image acquisition. Image acquisition process is performed 
through these three steps: firstly, energy is reflected from the object of interest, then 
the energy is focused by an optical system, finally the energy amount is measured using 
a camera sensor. Figure 12 illustrates overview of the image acquisition process [61].  
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Figure 12 – The main steps of image acquisition process 
 

The visual light spectrum is defined as the region between 400 and 700 nm. 
Therefore, human eye, along with the majority of cameras, can detect EM waves in 
this frequency range. As a result, the signal used to broadcast TV, radio, mobile phones, 
etc. is fundamentally the same as the light from the sun.  

Digital image processing methods. The following is how digital signal 
processing (DSP) operates: an analog-to-digital converter converts the analog signal 
into a digital signal. The received signals are then processed by the digital computer. 
The DSP systems also make use of computer peripherals with built-in signal processors 
that enable real-time signal processing. It is occasionally essential to convert the signal 
back to analog (e.g., to control a device). Digital-to-analog converters are employed 
for this purpose. There are several uses for digital signal processing. It may be utilized 
for image processing, speech recognition, or sound processing. 

The term «image processing» in imaging science refers to any type of signal 
processing where the input is an image, such as a video frame and a photograph. The 
output of image processing can either be another image or a set of attributes or 
parameters that are associated with the image. The majority of image processing 
methods consider the image as a two-dimensional signal and using common signal 
processing methods on it. Although analog (or optical) image processing is equally 
feasible, digital image processing is considered as the most frequently used signal 
processing method. 

Imaging is the process of acquiring pictures, which initially produces the input 
image. Image processing is a technique used to improve unprocessed or raw images 
from cameras or sensors mounted on airplanes, spacecraft, satellites, and other objects 
for various uses. Throughout the last four to five decades, several approaches have 
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been created in the field of image processing. A set of square pixels organized in 
columns and rows is called an image. Each picture element in a (8-bit) grayscale image 
includes assigned intensity that varies from 0 to 255. The term «grey scale image» is 
typically referred to as a black and white image, but the term stresses that there will 
also be several shades of grey in the image. A typical grayscale image includes 256 
grayscales (8-bit color depth). RGB and CMYK are the two primary color spaces used 
in science communication. The way that humans experience color via the R, G, and B 
receptors in their retinas is quite similar to the RGB color paradigm. RGB, which 
employs additive color mixing, is the fundamental color model used in television and 
other visual medium that projects color through light [62]. 

For an 8-bit true color image, any colors can be determined by the values of red 
(R), green (G) and blue (B). As a general rule, any RGB color ranges from 0 (least 
saturated) to 255 (most saturated). In the RGB color model, a wide range of colors can 
be obtained by mixing three colors in different ways. With this system 256x256x256 
discrete color combinations can be obtained. To convert a 0-255 system to a 0-1 
system, the RGB colormap values can be divided by a maximum value of 255. The 
three-color components are stored in a 3D matrix of numbers. A 2D matrix can be 
warped using with various edge detection filters. As shown in Figure 1, each of the 
filters is used to drive one channel and three outputs, respectively [61; 62]. Figure 13 
shows a color image represented as a matrix of three-dimensional numbers.  

 

 
 

Figure 13 – A color image represented as a matrix of three-dimensional numbers 
 

For image preprocessing, a single image is represented as an array of pixels using 
grayscale or RGB values. To increase the learning speed, the image data should be 
scaled with minimum-maximum normalization. A categorical sign color can be 
converted into a vector of three digital values using one-hot encoding. 

Putting it simply, digital image processing involves converting the input image 
into the output image. Choosing the most crucial information (such shape) and 
removing the rest (e.g., noise) is the goal of this method. There are several distinct 
image operations included in the digital image processing, such as filtering, 
segmentation, thresholding, compression and geometry transformation. 

Filtering. There are particular tools for acting on signals in both the one-
dimensional domain (for audio signals) and the two-dimensional domain, in this case 
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on images. Filtering is one such instrument. It entails some pixel-based mathematical 
operations that produce a new image. It is standard practice to apply filters to images 
in order to enhance their quality or extract key image features. 

Data augmentation. Data augmentation is one of the most important 
preprocessing techniques that can be carried out online or offline [63]. Offline 
techniques are used to increase the size of small data sets, while online techniques are 
used to increase the size of large data sets. Image data augmentation methods generate 
more training data from the original data and do not require additional memory to store. 
Common methods for creating new images include horizontal or vertical translation, 
random rotation, scaling, etc. Additionally, there are advanced data augmentation 
techniques that use conditional generative adversarial networks (GANs). The examples 
of data augmentation techniques are shown in (figure 14). 

 

 
 

Figure 14 – Examples of image data augmentation 
 

2.2 Data preparation and labeling 
Input data preparation process includes drawing a ground truth bounding box 

around the certain object and then converting it to the standard format between 0 and 
1. This process is called data labeling or annotation. Based on this process, the 
converted format the labeled data consists of the class number, the bounding box's 
center coordinates such as (x, y), as well as its width and height value (w, h). Therefore 
x, y – are the bounding box’s center coordinates, while w, h – are width and height of 
the bounding box, [(x1, y1), (x2, y2), (x3, y3), (x4, y4)] – is the ground truth bounding 
box, respectively. Below in (figure 15) an example of image labeling process is 
illustrated. As well as (figure 16) shows the bounding box values.  
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Figure 15 – Example of image labeling 
 

  
 

Figure 16 – Labeled image with bounding box values 
 

The image below shows the moment when two flying objects, a bird and a drone, 
flew into the field of view of the camera at the same time. The ground truth bounding 
boxes of the two flight objects are circled in green and red, and each is labeled with the 
respective drone and bird classes. Below is shown an example of labeling an image 
with two flying objects (figure 17).  

 

 
 

Figure 17 – Labeling an image with two flying objects 
 

Data preparation is the meaningful part of any object detection task. This chapter 
presented a brief description of video signal acquisition and processing steps, as well 
as the importance of such steps as data collection, preprocessing, and labeling in object 
detection has been described.  
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3 OBJECT DETECTION AND CLASSIFICATION USING NEURAL 
NETWORKS 

 
3.1 Deep Learning algorithms for image classification 
 

3.1.1 Convolutional neural networks 
Typically, a neural network is made up of several layers of linked neurons. Its 

design was influenced by the way the visual cortex is organized and is comparable to 
the way neurons communicate in the human brain. There are some primary components 
inside a neuron that calculate the measured sum of inputs. A layer is referred as a 
storage of neurons. CNNs are a well-known family of deep neural networks frequently 
employed in visual image processing, as well as it includes three main layers such as 
the convolution layer (Conv), the pooling layer (Pool), and the fully connected layer 
(FC). The general structure of CNN is illustrated (figure 18) [64]. 

 

 
 

Figure 18 – Outline of CNN architecture 
 

Convolution layer. The fundamental blocks of a CNN model are convolutional 
layers. A mathematical operation called convolution combines two sets of data. Filters 
and feature maps are the main components of convolution layers. Convolution is 
performed by sliding the filter along the input. Each place does the product of matrices 
by element and then sums the result. This sum is entered in the feature map. In other 
words, trained filters are utilized to extract significant features from the input image 
and the output of the filter that applied to the previous layer. Convolution operation is 
always performed via an odd number size filter (such as 1x1, 3x3, 5x5, 7x7, or 11x11). 
The size of the resulting image decreases with increasing filter size. This process causes 
the loss of information. That is why, CNN models frequently employ 3x3 filters during 
the convolution operation. Moreover, using small-sized filters is not always effective. 
Large-size filters might be useful in some situations. Filters are used for feature 
extraction. As a result, the filter size varies based on the used network and performed 
operation [65]. The fact that only the most crucial features are extracted during 
convolution operations causes the feature map's size to be less than the original input 
image’s size. In the illustration below, the original input image's size is 5x5; the filter's 
size is 3x3; and the size of the feature map produced by the convolution process is 3x3. 
Two crucial characteristics of the convolution operation are stride and padding. Stride, 
which is frequently chosen to be equal to s=1, denotes the step by which the filter 
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should be moved. The output feature map size is likewise reduced when the stride value 
is greater than 1, and significant information may be slightly lost (figures 19, 20). 

 

 
 

Figure 19 – The sequence of execution of the convolution operation at s=1, p=0 
 

 
 

Figure 20 – The sequence of execution of the convolution operation at s=2, p=2 
 

The size of the feature map can be determined using the following formula (1): 
 

                                                 𝑦!"#$ =	
%&'×)*+

!
+ 1                                                            (1) 

 
where n – is the input size, if the size of an input image is 5х5 then n=5;  

p – is the padding value, for the above example the padding type is "valid", i.e., 
p = 0; f is the filter size, f = 3 for a 3x3 filter; s is the striding value, s = 1. 

 
𝑦!"#$ =	

𝑛 + 2 × 𝑝 − 𝑓
𝑠 + 1 =

5 + 2 × 0 − 3
1 + 1 = 3	

 
Hence the size of the feature map in the output is equal to 𝑦!"#$ 	х	𝑦𝑠𝑖𝑧𝑒= 3х3.  
In the example above, no padding was used, so we assumed p = 0. If the output 

needs to be the same size as the input, then zero-padding is used, and the value of p is 
determined by the following formula (2): 
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$
                                                                      (2) 

 
When using a 3x3 filter, p=1 is taken so that the input size is 5x5 and the output 

is the same 5x5, and a border consisting of one row and one column is added to the 
input image. This type of padding is called "same".  

As a result, the 5x5 size input becomes 7x7 size. When convolution operation is 
performed, 5x5-size feature map is obtained at the output (figure 21). 

 

 
 

Figure 21 – The sequence of execution of the convolution operation at s=1, p=1 
 

Hyperparameters of the convolution layer. The convolution layer's four most 
crucial hyperparameters are as follows: 

1. Filter size: 3x3 filters are frequently used. Yet, there are other cases when 5x5, 
7x7, or even 1x1 filters are utilized, depending on the type of application. 

2. Number of filters:  it is the parameter that mostly varies between 32 and 1024, 
equal to the power of 2. The model gets more powerful when more filters are utilized, 
although overfitting in the network is possible because of the increased number of 
parameters. Typically, in the first layers the number of filters is small, then the number 
of filters is gradually increased as the network becomes deepens. 

3. Stride: The value is assumed to be 1. 
4. Padding: Padding is frequently utilized.  
Activation function. Deep learning is frequently employed to resolve non-linear 

problems. This is because deep learning has outperformed other approaches in 
addressing non-linear problems. The results of the convolution layer's matrix product 
are linear values.  

After each convolution layer, a nonlinear activation function (elu, selu, relu, 
tanh, sigmoid, hardsigmoid, softplus, softsign, linear, and exponential) is typically used 
to transform these values into nonlinear. For deep neural networks, the non-linear 
rectified linear block relu has been chosen as the primary activation function due to its 
ease of use and speedy training. 

Pooling. Pooling layer is regularly embedded into the CNN architecture. Its main 
job is to compress each feature map and extract the greatest number of pixel values 
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from the grid in order to shrink the size of the image. By using max pooling, the largest 
elements of the input feature map are extracted using a 2x2 window with a stride of 2, 
and the output feature map that is twice as tiny as the input is created. While using 
average pooling, the average sum of all values in the same window is calculated [65, 
p. 17]. In CNN designs, pooling is often carried out using a 2x2 window with stride 2 
and no padding (figure 22). 

 

 
 

Figure 22 – Max pooling operation 
 
Flattening and fully connected (FC) layer. The model will be able to comprehend 

the features once it has gone through the aforementioned procedures. The fully 
connected layer (FC) follows the convolution, activation, and pooling layers. This layer 
depends on all the neurons of the previous layer. A multilayer perceptron is comparable 
to a fully connected layer (FC). While the fully connected layer (FC) anticipates a 1D 
vector of integers, the output of the Conv and Pooling layers is consistently a 3D 
volume [65, p. 19]. 

The output of the last pooling layer is then flattened into a vector and used as the 
input for the fully connected layer (FC). Moreover, it is supplied into the neural 
network nodes that carry out the classification. A convolutional network and a neural 
network are connected using full connection, which then assembles the network (figure 
23).  

 

 
 

Figure 23 – Fully connected (FC) layer 
3.1.2 Different CNN model architectures for image classification 
LeNet. Although the LeNet network was proposed by LeCuN in 1998, limited 

computing capabilities and memory volumes made it difficult to implement the 
algorithm until 2010. LeCun et al. proposed a CNN with a back propagation algorithm 
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and experimented on the MNIST dataset of handwritten numbers to achieve state-of-
the-art accuracy. The base configuration of LeNet-5 consists of the following 
components: two convolution (Conv) layers, two Average pooling layers, two Fully 
Connected (FC) layers and a Softmax classifier in the output layer. Input is a 32x32x1 
grayscale image. In the first step, a 28x28x6 feature map is obtained by applying six 
5x5 filters with stride=1 without applying any padding. Using Average pooling with a 
2x2 filter with stride=2, the size is reduced by a factor of 2, and the result is 14x14x6. 
Then a 10x10x16 feature map is obtained by applying a second convolution layer 
(Conv) with sixteen 5x5 filters. This feature map passes through the pooling layer and 
has a size of 5x5x16. The next layer is the Fully connected layer (FC) with 120 neurons. 
400 (5*5*16=400) neurons in the previous layer are connected to these 120 neurons. 
These 120 neurons are connected to 84 neurons of the next fully connected layer (FC) 
and send this connection to a softmax (previously tanh) classifier to recognize numbers 
from 0 to 9 [65, p. 26]. LeNet network structure is shown on the following (table 1). 
 
Table 1 – LeNet network architecture 
 

Layer Size Filter size Stride Activation function 

Input Image 32х32х1 - - - 
1 Convolution 28x28x6 5x5 1 tanh 

Average Pooling 14x14x6 2x2 2  
2 Convolution 10x10x16 5x5 1 tanh 

Average Pooling 5x5x16 2x2 2  
3 Dense 1x1 5x5 1  
4 FC 84 - -  

5 (output) FC 10 - - Softmax 
 
AlexNet. Although LeNet began the history of deep CNN, at that time CNN was 

limited to handwritten number recognition tasks and could not do a good job for all 
image classes. The most difficult ImageNet competition for visual object identification, 
known as the ImageNet Large Scale Visual Recognition Competition, was won in 2012 
by Alex Krizhevesky et al. who offered a deeper and more comprehensive CNN model 
compared to LeNet (ILSVRC) [65, p. 26]. Compared to all existing machine learning 
and computer vision techniques, AlexNet has attained state-of-the-art recognition 
accuracy. It was an important breakthrough in the field of computer vision and machine 
learning to perform visual recognition and classification tasks, and a point in history 
where interest in deep learning grew rapidly. 

The depth of the AlexNet architecture was increased from 5 (LeNet) to 8 layers 
to apply CNN to different image categories. The model consists of 5 convolution layers 
in the feature extraction part and 3 fully connected layers in the classifier part. The use 
of smaller size filters such as 5×5 and 3×3 is now normal. Input images are fixed to 
224x224 size with three color channels. As in LeNet, the pattern of increasing the 
number of filters in each layer was preserved: 96, 256, 384, 384, and 256. Also, in each 
layer, the filter size decreased: in the initial layers, the size decreased from 11×11 to 
5×5, and further 3×3 size filters were used in deep layers. Max pooling operation is 
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performed using 3×3 dimensional filters with stride=2. The use of smaller size filters 
such as 5×5 and 3×3 is now normal. Table 2 shows the full AlexNet network 
architecture.  

 
Table 2 – AlexNet network architecture 

 

Layer Size Filter size Stride Activation 
function 

Input Image 224х224х3 - - - 
1 Convolution 55x55x96 11x11 4 ReLU 

Max Pooling 27x27x96 3x3 2  
2 Convolution 27x27x256 5x5 1 ReLU 

Max Pooling 13x13x256 3x3 2  
3 Convolution 13x13x384 3x3 1 ReLU 
4 Convolution 13x13x384 3x3 1 ReLU 
5 Convolution 13x13x384 3x3 1 ReLU 

Max Pooling 6x6x384 3x3 2  
6 FC 4096 - -  
7 FC 4096 - -  

8 (output) FC 1000 - - Softmax 
 
Below in (table 3) is given the difference between LeNet and AlexNet networks. 
 

Table 3 – Difference between LeNet and AlexNet 
 

Parameters LeNet AlexNet 
Activation function tanh ReLU 
Pooling Average Max 
Dropout regularization - + 
Data augmentation - + 

 
ZFNet/Clarifai. In 2013, Matthew Zeiler and Rob Fergue won the 2013 ILSVRC 

with CNN architecture, which was an extension of AlexNet. The network was named 
ZFNet [65, p. 29] in honor of the authors. Since CNN is computationally expensive, 
optimal use of parameters is required in terms of complexity of models. The ZFNet 
architecture is an improvement of AlexNet, with a modified version of its network 
parameters. Here, instead of 11x11 filters, 7x7 filters are used to significantly reduce 
the number of weights. This significantly reduces the number of network parameters 
and increases the overall accuracy of recognition. 

VGG (Visual Geometry Group). The development of deep neural networks for 
Computer vision tasks was a little blurry after AlexNet. In 2014, Karen Simonyan and 
Andrew Zisserman presented a much deeper VGG network [65, p.30]. Their model 
was developed for the ILSVRC 2014 competition. In their work, the authors showed 
that the depth of the network plays an important role to achieve better recognition or 
classification results in CNN. The first important difference of the network is the use 
of many smaller size filters, in particular stride=3×3 and 1×1 with stride=1 step. VGG 
networks use examples of two, three, and even four convolution layers before applying 
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the max pooling layer. The reason for this is that several stacked layers with small 
filters approximate the effect of a single convolution layer with a large-sized filter. 
Another important difference is the sheer number of filters used. The number of filters 
increases with the depth of the model, it starts from 64 and increases to 128, 256, at the 
end of feature extraction part it reaches to 512. Several versions of the architecture 
have been developed and evaluated, although two of them are often mentioned in terms 
of performance and depth. They are named by the number of layers: VGG-16 and 
VGG-19. Table 4 shows the full network structure of VGG network.  

 
Table 4 – VGG network architecture 
 

Layer VGG-16 VGG-19 
input 224х224х3 
1 Conv-64 Conv-64 
2 Conv-64 Conv-64 
3 Conv-128 Conv-128 
4 Conv-128 Conv-128 
5 Conv-256 Conv-256 
6 Conv-256 Conv-256 
7 Conv-256 Conv-256 
8 Conv-512 Conv-256 
9 Conv-512 Conv-512 
10 Conv-512 Conv-512 
11 Conv-512 Conv-512 
12 Conv-512 Conv-512 
13 Conv-512 Conv-512 

maxpool 
14 FC-4096 Conv-512 
15 FC-4096 Conv-512 
16 Fc-1000 (softmax) Conv-512 

Maxpool 
17  FC-4096 
18  FC-4096 
19  Fc-1000 (softmax) 

 
GoogleNet (Inception v1). Inception – it has filters of different sizes (for 

example 1×1, 3×3, 5×5) a concatenate block consisting of parallel pile layers and a 3×3 
max pooling layer, and their results are combined. 

Winner of the GoogleNet 2014-ILSVRC competition. The main goal of the 
GoogleNet architecture was based on achieving high accuracy at reduced 
computational costs [65, p. 31]. It proposed a new concept for the Inception blog at 
CNN, so this network architecture is sometimes called Inception v1. Inception is a 
concatenate block that consists of parallel convolution layers with filters of different 
sizes (eg 1×1, 3×3, 5×5) and a 3×3 max pooling layer (figure 24).  
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Figure 24 – Inception block: Naive version 
 

The problem with the implementation of the Naive version of the Inception 
model is that the number of filters (depth or channels) starts to increase rapidly when 
the Inception modules are merged. Performing a convolution of filters of large sizes 
(for example, 3 and 5) can be computationally expensive when the number of filters is 
large. In order to solve this problem, 1x1 convolution layers are used to reduce the 
number of filters of the Inception model. In particular, before the 3×3 and 5×5 
convolution layers and after the pooling layer.  

The difference between the Naive Inception layer and the last Inception layer 
lies in the addition of 1×1 convolution kernels. These kernels made it possible to reduce 
the size to computationally expensive layers. GoogLeNet has a total of 22 layers, far 
higher than any network before it. However, the number of GoogLeNet network 
parameters used was much smaller than the previous AlexNet or VGG. While 
GoogLeNet has 7M network parameters, AlexNet has 60M and VGG has 138M 
network parameters. While GoogLeNet has 7m network settings, AlexNet has 60m and 
VGG 138m network settings (figure 25). 
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Figure 25 – Inception block with reduced size 
 

Residual Network (ResNet 2015). The winner of the ILSVRC 2015 challenge 
was the ResNet residual network. Kaiming He developed the Resnet model in order to 
create very deep networks that do not suffer from the vanishing gradient problem. The 
main point of the model is the idea of residual blocks using shortcut connection [65, p. 
33]. That is, these are simple connections in a network architecture, where the input is 
stored as it is (not measured), and then goes to a deeper layer, for example, by skipping 
the next layer (skip connection). ResNet is made with different number layers: 34, 50, 
101, 152 and even 1202. The popular ResNet-50 consists of 49 convolution layers and 
1 fully connected layer at the end of the network. Traditional feed-forward networks 
with residual connections are called ResNet. The output of the residual layer is 
determined based on the (l-1)-th output from the previous xl-1 layer. F(xl-1) – is the 
output obtained after performing various operations, Batch normalization, which is 
accompanied by the ReLU activation function in xl-1.  

 
𝑥, = 𝐹(𝑥,*-) + 𝑥,*- 

 
A residual block is a model of two convolution layers with ReLU activation, 

where the output of the block is combined with the input of the block, i.e., a shortcut 
connection is performed (figures 26, 27). 
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Figure 26 – Basic drawing of the residual block 
 

 
 

Figure 27 – Basic block diagram of the Inception residual block 
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3.2 Object detection algorithm 
 

3.2.1 Background subtraction algorithm 
The detection of flying or moving objects from a video sequence may be done 

using a variety of techniques, including background subtraction, the optical flow 
approach, edge detection, and frame differencing. Optical flow uses the relative 
velocities of the items in the picture to detect moving objects and estimate motion in a 
video. The optical flow approach cannot be used for real-time detection applications 
due to its complex computation. A frame differencing method separates the moving 
objects from a video sequence by computing the difference between the current and 
previous frames. Although while frame differencing has several benefits, such as rapid 
implementation, adaptability to dynamic changes in the environment, and relatively 
cheap computational requirements, it is typically ineffective for collecting all the 
pertinent pixels from moving regions. Two-point background subtraction has been 
implemented in preparatio of the proposed real-time drone detection system. This video 
processing method was used to identify drones in the scenario with a static background 
[66]. 

The following procedures have been used for background subtraction: 
1. Acquisition of two distinct flow variables. 
2. Determining the difference between the two frames' subtraction to determine 

which pixels have changed.  
3. Using the cv2.COLOR BGR2GRAY filter to convert the video frames' RGB 

color matrices into unidimensional matrices that match to grayscale images. 
4. Applying the noise-removal and edge-blurry GaussianBlur filter to the 

images.  
5. Conversion of the blurred grayscale image into a binary image based on a 

predetermined threshold. 
6. Extending the detected region more evenly by enlarging the white pixels using 

the morphological operations such as dilation method. 
7. Updating an older frame with the current frame.  
For pixels that change their values in the subsequent frame, the binary image 

transformation enables set the value 255, which means white color, while the 
unchanged pixels are made to be 0, which is black color. The final processing is 
depicted (figure 28), where the essential processing steps are visible. The original video 
frame may be seen in the upper right corner. The frame subtraction is reported there, 
to its right. The threshold application is shown in the bottom right corner, and the final 
processing – where the altered pixels have been dilated to better identify the drone – is 
visible to its right. 
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Figure 28 – The main steps of the background subtraction process 
 
Chapter’s conclusion. Classification, detection, and segmentation are the major 

three problems in the field of computer vision research. In order to draw a bounding 
box around a drone in a frame, we need to know what and where the item in the frame 
is. This information is needed for object detection task.  

The background subtraction method is used to separate a foreground object from 
a video sequence's background. Because it can be used for real-time detection and is 
quick and accurate, the background subtraction approach is one of the most used 
detection techniques. It is also simple to implement. This method's primary flaw is that 
moving cameras cannot utilize it since the background of each shot changes. All of the 
brief films in the dataset for the Drone-vs-Bird identification challenge were captured 
by a static camera at a great distance when we utilized a video with a static background. 
Therefore, a background subtraction technique served as the foundation for our motion 
detector. 
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4 THE PROPOSED REAL-TIME DRONE DETECTION SYSTEM 
IN THE SCENE WITH A STATIC BACKGROUND  

 
The first experiment is concentrated on the real-time drone detection task in a 

scenario with a static background. This task was split into two distinct steps: the first 
step deals with moving object detection task, as well as the second task is classification 
the detected object as drone, bird, and background. Therefore, the proposed drone 
detection method comprises of two modules as shown (figure 29) moving objects 
detector and a drone-bird-background classifier.  

 

 
 

Figure 29 – The proposed drone detection pipeline 
 

Background subtraction (BS) method is served as a motion detector, as well as 
all the moving objects in the scene are the outputs of this module. In order to distinguish 
drones from other the flying objects, all the detected moving objects are fed to CNN 
classifier. CNN classifier was trained on the entire dataset of image frames taken from 
different video signals. In the third chapter, the theoretical description of both methods 
is separately explained in detail and below are the steps of the experiment. 

 
4.1 Moving Objects Detection 
The detection of any objects in a scene that are moving are found based on 

motion detector. This module's effectiveness was evaluated using its Recall value. 
Using the dataset from the Drone-vs-Bird challenge, experimental studies of several 
motion detectors were carried out. The motion detector based on the two-point 
background subtraction technique [67] managed to attain the highest Recall. The result 
of background subtraction method is shown (figure 30).  
 

 
 

Figure 30 – The result of Background subtraction algorithm 
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The common background subtraction technique’s output is a binary image, 
where pixels that change their values in the following frame are assigned the value 1 
while the pixels that remain unaltered are set to 0.  

The output image of BS algorithm includes single pixels that are dispersed 
throughout the image along with moving objects. These single pixels cause noise, as 
well as to get rid on the noise the output binary image is filtered using various filters. 
Figure 31 displays an illustration of a filtered binary image. 

 

 
 

Figure 31 – Filtered binary image 
 

The next step is to apply morphological operation called dilation to join closely 
spaced pixels. This operation helps to increase the detector's processing speed by 
reducing the number of distinct regions, which are checked by CNN classifier. The 
result of dilation operation is illustrated (figure 32). 

 

 
 

Figure 32 – The output image of dilation operation 
 
Finding the bounding boxes that cover the regions identified in the previous step 

is the final stage on the moving object detector. Finally, all detected bounding boxes 
are forwarded to the drone-bird-background classifier. The detected bounding boxes is 
illustrated (figure 33). 
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Figure 33 – The output image of dilation operation 
 
All above mentioned steps together form the entire model of proposed drone 

detection system (figures 34, 35).  
 

 
 

Figure 34 – The steps of the proposed drone detection algorithm 
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Figure 35 – Proposed drone detection system structure 
 

4.2 Moving Objects Classification 
The classification of detected or found objects is one of the crucial parts of the 

proposed approach. Drones, birds, aircraft, insects, and moving scene parts are among 
the moving objects that are detected in real-world scenarios. Consequently, we made 
the decision to use a classifier that categorizes all the detected objects into three classes: 
drones, birds, and background respectively. The moving objects classification task was 
performed using CNN classifiers such as VGG-16 and MobileNetV2 [68]. The CNN 
was chosen because of its great accuracy and short inference time. [69] claims that a 
detector using the MobileNet [70] backbone network has the highest detection speed. 
With a considerable increase in accuracy, MobileNetV2 is well-known as an upgraded 
version of MobileNet. The detailed theoretical description of both CNN classifiers was 
explained in Chapter 3. There are 19 original basic blocks, referred to as bottleneck 
residual blocks, in the MobileNetV2 network design. After these blocks, a 1x1 
convolution layer with an average pooling layer was added. The network design ends 
up with a classification layer. We compared two classifiers such as VGG-16 and 
MobileNetV2, both of which were modified from the original network design, as well 
as based on the experiment results, we chose MobileNetV2 classifier due to the highest 
classification accuracy. By adjusting the stride, padding, and filter size, the modified 
network became more appropriate for small images. As well as, we made changes to 
the classification layer, as a result the network was focused to classify only above three 
classes.  

To perform above mentioned tasks the experiment consists of the following 
parts:  

– data preparation; 
– training; 
– evaluation Metrics; 
– results; 
– discussion. 
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Data Preparation. In order to train CNN, the amount of data is essential. The 
network's generalization ability is impacted by insufficient data. As a result, whenever 
the network receives new data, the classification accuracy is decreased. The Drone-vs-
Bird challenge dataset consisting of 11 videos shot with a static camera, served as the 
training data. The videos may include a drone as well as birds and other moving objects. 
Therefore, all moving objects that appear in the frames of each video are annotated. 
The ground truth bounding boxes' coordinates and sizes are used as annotations. We 
collected 10,155 drone images from the videos and their annotations. We used the 
moving object detector discussed in the preceding chapter to the whole dataset in order 
to extract images of birds and background from the videos. Afterwords, the image 
frames of each detected object are manually annotated (or labeled) using LabelImg 
Tool. As a consequence, 9348 background images and 1921 bird images were 
collected. We further included additional 2651 bird images from Wild Birds in a Wind 
Farm: Image Dataset for Bird Detection [71] because the amount of bird images was 
less than other two classes. Hence, the entire dataset consisted of 24,075 image frames. 
Since the MobileNetV2 network’s input size was 32x32x3, all annotated images 
resized to fit the networks’ input layer. Figure 36 illustrates a few examples of the 
resized images. 
 

 
 

Figure 36 – Some image examples gathered for training 
 

Note – The top row shows drones, the second row includes background images, while bird 
images are featured the third row 

 
4.3 The architecture of proposed CNN classifiers 
Modified VGG-16 CNN classifier. Figure 37a shows the basic original VGG-16 

model with 13 convolutional (conv) and 3 fully connected (FC), i.e., 16 layers in total. 
The reason it is called VGG-16 is because of the number of layers. The size of the input 
image is 224x224, and the output softmax activation function uses the ImageNet 
dataset to classify it into 1000 classes. That is, if we use the original model directly, we 
can classify up to 1000 classes of objects. However, our study only needs to detect 
three classes, which are called drones, bird and background, so we modify the CNN 
model to adapt to only 3 classes. Also, in order to reduce the complexity of the 
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proposed model and prevent the model from learning excessive details, i.e., to prevent 
overfitting, after fully connected layers FC-1, FC-2, Dropout-1 and Dropout-2 layers 
with a probability of 0.5 and 0.3 added. That is, by running a dropout layer, we 
distinguish or ignore certain neurons with a probability of 0.5 and 0.3 when training 
the model. Dropout is only used during model training. The original VGG-16 model 
consists of 138 million trained parameters. That is, it is very cumbersome and takes a 
very long time to train the model if we train it from scratch. Therefore, we train only 
fully connected layers using pre-trained ImageNet weights. As a result, only 2.5 million 
training parameters are used to train the model. The modified version of VGG-16 CNN 
is illustrated (figure 37b). 

 

 
 
а  

 
b 
 

a – the structure of original VGG-16; b – modified VGG-16 (b) models 
 

Figure 37 – The model structures of original VGG-16 and its modified version 
 

4.4 Evaluation Metrics 
Evaluation is needed to check the performance of object recognition model and 

compare it with other models. ROC curves, Precision and Recall, F-scores, and False 
positives per image are some statistical and machine learning metrics that may be used 
to assess any object detection method. To assess the effectiveness of the object 
detection model, the Intersection of Union (IoU) idea was developed. Typically, first 
of all, the output of any object detector, which is a predicted bounding box is compared 
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to a list of manually annotated ground-truth bounding boxes. Most investigations on 
object detection have employed the overlap criteria, which was developed by 
Everingham et al. [71] for the Pascal VOC challenge, to address the question of when 
a detection may be regarded as accurate. As previously mentioned, the detections are 
allocated to ground truth objects, and their true or false positive status is determined by 
computing the bounding box overlap. According to [72], the overlap ratio between the 
predicted and ground truth boxes must be more than 0.5 (50%) in order to be regarded 
as a correct detection. IoU is determined by dividing the intersection by the union of 
the two bounding boxes: the predicted and ground truth bounding boxes (figure 38). 
The intersection over union (IoU), which is used to establish the Pascal VOC overlap 
criteria, is calculated as follows: 

 
																																					𝐼𝑜𝑈 = 𝑎! =

"#$"(&%	∩&'(	)
"#$"(&%	∪&'(	)

                                                (3.1) 

 
where Bp and Bgt stand for predicted and ground truth bounding boxes; IoU means 
intersection over union, while 𝑎. stands for an overlap ratio; area(B/	 ∪ B12	) refers to 
the area of union of predicted and ground truth bounding boxes, whereas area(B/	 ∩
B12	) refers to the overlap or intersection of these two bounding boxes. Once detections 
and ground truth have been matched the number of properly detected objects, also 
known as true positives (TPs), inaccurate detections, or false positives (FPs), and 
ground truth objects that the detector missed, also known as false negatives (FNs), can 
be calculated. Many assessment metrics might be calculated using the total number of 
TPs, FPs, and FNs. 

 

 
 

Figure 38 – An example of IoU 
 
The higher the IoU, the closer the predicted bounding box and the ground truth 

bounding box are to one another. To evaluate whether the detected object is valid, a 
threshold value is set. The threshold value in this thesis is fixed at 0.5. If so, then: 

1. If IoU ≥ 0.5, then the detected object is considered valid and is classified as 
True Positive (TP). 

2. If IoU ≤ 0.5, then the detected object is considered invalid and is classified as 
False Positive (FP). 
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3. If the model is unable to recognize the ground truth in the image, then the 
classification outcome is False Negative (FN). 

4. True Negative (TN) is the classification result for any part that lacks ground 
truth and recognized objects.  

The Drone-vs-Bird challenge's metrics were used to assess our approach. Three 
test videos bearing the names gopro 001, gopro 004, and gopro 006 were provided by 
the challenge for evaluation. Frames from the first video included two drones and a 
moving background. The second video had a static background and a drone that was 
quite modest in size. The third video had multiple birds on the frames in addition to the 
drone.  

We used our drone detector on the above-mentioned test videos in order to 
determine Precision and Recall by counting the total number of TPs, FPs, and FNs. 

                                          
																																															𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 34

34&54
                                            (4.2) 

 
																																																		𝑅𝑒𝑐𝑎𝑙𝑙 = 34

34&56
                                                   (4.3) 

 
Recall indicates if the detection is capable to detect all the objects, whereas 

Precision indicates whether the detection is accurate. Precision and Recall of the drone 
tracking system should ideally be high in order to prevent tracking of incorrect objects 
or drone misses. In certain circumstances, customers might want a model with 
extremely high Precision and not care about the Recall since they would not want any 
false alarms. A model with high Recall and the ability to tolerate moderate false alarms 
would be desired by other customers who wish to track every suspect target. Therefore, 
the majority of information extraction methods may be evaluated using the metrics of 
Precision and Recall. They can occasionally be used independently or as the basis for 
derived metrics like F-score and Precision-Recall curves [73]. So, on the basis of these 
two metrics, we may calculate the F1-score metric, which combines Precision and 
Recall data. Hence, the primary evaluation metric employed in the Drone-vs-Bird 
challenge's is determines as below: 

                                      
																																															𝐹- = 2 ∗ 47$8"!"9%∗;$8<,,

47$8"!"9%&;$8<,,
                                       (4.4) 

 
4.5 Experiment Results 
Using the dataset described in the preceding section, we trained the modified 

VGG-16 and proposed MobileNetV2 CNN classifiers from scratch. 70% of the image 
frames taken from the video signal of the whole dataset were used for training, 15% 
for validation, and 15% for testing. The stochastic gradient descent (SGD) optimization 
approach with a starting learning rate of 0.05, a momentum of 0.9, and a weight decay 
of 0.001 was used to train the network. Using a 2 GB NVIDIA GeForce GT 1030 GPU, 
the training was carried out with the batch size of 88. Every 50 epochs throughout the 
training, the starting learning rate was reduced by a factor of 10. 
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Training the moving objects classifier based on modified VGG-16 and proposed 
MobileNetv2 CNN. The modified VGG-16 CNN model was trained on 70% of the 
entire dataset and showed a training accuracy of 99.37% for the three classes called 
background, drone and bird. Whereas the proposed MobileNetv2 CNN model showed 
a training accuracy of 99.83% for above three classes.  

To use the classification metric, the test data is converted to another number 
format, i.e., numpy array. Then this converted code is run through the built-in 
classification metrics to get accurate results. Then class names are added as 
background, drone, and bird. Below in tables 1 and 2 were illustrated training 
classification metrics for both classifiers. Precision value in the table takes into account 
only positive predictions, while Recall value takes into account both positive and 
negative predictions. Training classification metrics both VGG-16 and MobileNetv2 
CNN networks are given below in (tables 5, 6). 

 
Table 5 – Training classification metrics for modified MobileNetv2 CNN classifier 

 

Class names Precision Recall F-1 score 
Background 0.99  0.99    0.99 
Bird 1.00    0.99    100 
Drone  0.99     0.99    0.99 

 
Table 6 – Training classification metrics for modified VGG-16 CNN classifier 
 

Class names Precision Recall F-1 score 
Background 0.98  0.99    0.99 
Bird 1.00    0.99    100 
Drone  0.99     0.99    0.99 

 
An epoch represents how many times the model has been trained on the entire 

dataset. In our case, the number of epochs is equal to 50. From the dependence graph 
of training and validation classification accuracies on the number of epochs shown in 
(figure 39), it can be seen that even 30 epochs are sufficient for training the model. 
Training a model with a very small number of epochs may under-learn the features and 
characteristics of the data and, as a result, perform very poorly when classifying new 
data. In machine learning, this situation is called underfitting, that is, when the amount 
of training data is small, or when the data is very small, it is known that the training is 
insufficient. On the other hand, if the model is trained with a very large number of 
epochs, the model may become unreliable when the model learns the training data in 
detail down to the noise and is tested against new data. This situation in machine 
learning is called overfitting. Also, the lower value of the loss function indicates the 
reliability of the model. According to the result of our experiment, the value of the 
verification loss function in the last epoch is equal to 0.0507. 

It is not enough to evaluate the classification model by this result alone. To assess 
the reliability of a model, it is necessary to test how well it correctly predicts untrained 
or unseen data. In our case, the MobileNetv2 classification accuracy during testing 



60 
 

showed 99.83% for, while VGG-16 CNN classification accuracy was reached to 
99.317% and the value of the loss function, in turn, was equal to 0.06. 

 

 
 

Figure 39 – Training and validation classification accuracies over 50 epochs run 
 

However, the evaluation of how well the proposed model works should not be 
limited to this. There are two other ways to show how well our model predicts or 
classifies untrained/unseen, new data. One of them is the confusion matrix, and the 
other one is the classification metrics. 

One of the ways to evaluate the model is to build a confusion matrix. The numpy 
array we created is placed inside the data frame, because the confusion matrix works 
well in the data frame. To evaluate the quality of the output data in the dataset of the 
proposed classifier, we constructed two types of confusion matrix here: normalized and 
unnormalized confusion matrices. 

In our case, due to class imbalance, i.e., the number of data in each class is 
different, it is useful to construct an unnormalized confusion matrix to clearly show 
which class is misclassified. Here, the diagonal elements show the number of matches 
of the predicted class with the actual class, and the off-diagonal elements show the 
number of elements incorrectly predicted by the classifier. The higher the number of 
diagonal elements, the better the model predicts the test data. For example, out of 9991 
UAV images, 9980 are correctly predicted and 11 are misclassified as background. 
Normalized and unnormalized confusion matrices of moving object classifiers are 
illustrated in (figures 40, 41). 
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Figure 40 – Unnormalized confusion matrix of the trained convolutional neural 
network (CNN) 

 

 
 

Figure 41 – Normalized confusion matrix of the trained convolutional neural network 
(CNN) 

 
Figure 42 displays the experiment results attained by using proposed detector on 

all test videos. With an IoU of 0.5, the true positives and false positives values were 
counted. Depending on the size of the drone, the results were separated into three 
ranges. 
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Figure 42 – Experiment results for different drone sizes 
 
The ground truth bounding box's width and height are shown in Figure 43 as w 

and h, respectively, in pixels. √𝑤 ∗ ℎ is the drone's size as seen in the image This 
parameter decreases as the distance between the drone and camera increases. Precision 
and Recall values were calculated based on these data. The F1-score was then 
determined using Equation (4.4) and appended to the final row of (table 7). Each video 
was separately carried out the same sequence. 
 
Table 7 – The evaluation's results for IoU value of 0.5 

 

Video name Precision Recall F1-score 

gopro_001 0.786 0.817 0.801 
gopro_004 0.554 0.910 0.689 
gopro_006 0.735 0.691 0.712 
Overall 0.701 0.788 0.742 

 
We performed experiments for various IoU values in order to analyze the 

detector in detail. As illustrated in (figure 43), the curves were drawn based on the 
Recall, Precision, and F1-score data that were obtained. 
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Figure 43 – Values of evaluation metrics for various IoU levels 
 
Figure 44 shows qualitative detection results. 
 

 
 

Figure 44 – Qualitative detection results 
 

Note – Ground truth boundary boxes are highlighted in green. The results of applied detector 
are red bounding boxes 
 

Inaccurate bounding box calculations were to blame for 85% of all false 
positives, which led to an estimated IoU value of less than 0.5. The remaining 15% 
were classification errors that led to the misclassification of drones as other moving 
objects. Figure 45 provides examples of incorrect classification-based false detections. 

 

 
 

Figure 45 – Incorrect classification-based false detections 
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The detector classified the images shown in figure 45 as drones. Birds, clouds, 
swaying tree branches, and grass were the most often misclassified objects. The 
detector processed nine 1920x1080 frames per second on average. Moving object 
classification took up one-third of the processing time, while their detection took up 
the rest time. It has been discovered that the moving object detection speed was 
dependent on the background change rate, which was increased with increasing number 
of bounding boxes supplied into the classifier. Figure 46 demonstrates this dependence 
in further detail. 

 

 
 

Figure 46 – The results of the detection speed evaluation 
 

4.6 Discussion 
According to conducted research, dividing drone detection process into two parts 

such as moving object detection and classification of detected moving objects is 
efficient for precise and fast drone identification. Yet there are some limitations with 
using motion information to detect moving objects. Firstly, as illustrated in (figure 46) 
moving background increased the number of detected objects, which in turn increased 
the classification time and the quantity of false positives. Second, as shown in (figure 
47), it became difficult to distinguish the drone from other objects when it was flying 
nearby moving objects. 
 

 
 

Figure 47 – The result of background subtraction method applied to the video 
segment when a drone was flying close to swaying grass 
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As a consequence, the drone was not detected which increased the false 
negatives. As well as, due to the fact that more images were supplied to the classifier 
the false positive detection also increased in number. An increased number of 
classification errors resulted from the classifier's accuracy was not equal to 100%. 
Using the metrics from the Drone-vs-Bird detection competition [74] allowed to 
compare research results with other teams’ results, who took part in the Drone-vs-Bird 
detection challenge. Table 8 displays the comparison results for prior works and 
proposed approach. 

 
Table 8 – Comparison results for prior works and proposed approach 

 

Methods Precision Recall F1-score 

Method used*  0.756 0.713 0.734 
Method used** 0.795 0.591 0.678 
Method used***  0.103 0.146 0.121 
Method used****  0.524 0.342 0.414 
Proposed approach 0.701 0.788 0.742 

* – in [42, p. 8909854-1-8909854-4]; 
** – in [43, р. 8909865-1-860865-4]; 
*** – in [44, р. 8909830-1-890830-4]; 
**** – in [45, р. 8909856-1-890856-4] 

 
The experiment's results indicated that proposed approach's accuracy was 

comparable to that of the approaches put forward in [42, p. 8909854-5; 43, 
p. p.8909865-5]. Proposed detector had a much faster detection speed compared to [43, 
p. 8909865-4], where just the super resolution application was carried out at a speed of 
0.58 FPS. Recall and F1-score values of the proposed approach were higher than other 
methods used in above mentioned works.  

 
4.7 Chapter’s conclusion 
This chapter considers a real-time approach for drone detection that is 

comparable to current algorithms. It was clarified that dividing the drone detection task 
into the detection and classification steps can solve the given task effectively. The 
results of the experiment demonstrated both the benefits and drawbacks of the proposed 
approach. The main limitation of the proposed detector lies on its heavily influenced 
performance on the moving background existence. In order to solve this limitation and 
reach higher detection accuracy the next chapter is dedicated to a sensor fusion 
approach combining multi-angle visual information from several camera sensors.  
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5 PROPOSED DRONE DETECTION SENSOR VOTING SYSTEM 
BASED ON VISUAL DATA FROM MULTIPLE CAMERAS 

 
Multi-sensor fusion refers to techniques for data or decision fusion from many 

sensors, sometimes even from distinct ones, in order to make one sensor make up for 
the shortcomings of another or to increase the overall accuracy or robustness of a 
decision-making process [75]. 

 
5.1 A three-sensor system 
This research work focused on using camera sensors for UAV detection and 

classification task. As the fusion is performed by fusing data from sensors of the same 
type, all sensors have the same input data, which are RGB images. Therefore, sensors 
A, B, C can be referred as camera-1, camera-2 and camera-3 (figure 48).  

 

 
 

Figure 48 – Decision level fusion of three camera sensor system 
 
Figure 48 illustrates the late sensor fusion process, where fusion is performed in 

the decision level stage. As we can see the data source from each sensor is trained 
separately, detection and classification are made for each sensor, and in the final stage 
the decisions from each sensor are fused based on voting method.  

Several sensor output data combinations. There are three types of data output 
combinations of a three-sensor system: parallel, series and series/parallel. The 
topologies and detection spaces of each type are illustrated in following below figures: 

1. Parallel. In this topology sensors operate independently of one another. The 
example of parallel topology of a three-sensor fusion system and its Venn diagram with 
shaded sensor detection spaces are illustrated in (figure 49a, 49b).  
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a 

 
 
b 
 

a – parallel topology of a three-sensor fusion system; b – Venn diagram of parallel topology.  
Sensor detection space is shaded 

 

Figure 49 – Parallel sensor data output combination 
 

2. Series 
Each sensor's output influences the system's output. The example of series 

topology of a three-sensor fusion system and its Venn diagram with shaded sensor 
detection spaces are illustrated in (figure 50a, 50b). 
 

 
 

a 
 
a – series topology of a three-sensor fusion system 

 

Figure 50 – Series sensor data output combination, sheet 1 
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b 

 
b – Venn diagram of series topology. Sensor detection space is shaded 

 

Figure 50, sheet 2 
 

3. Series/Parallel. The combination of several sensor outputs determines system 
output. The example of series/parallel topology of a three-sensor fusion system and its 
Venn diagram with shaded sensor detection spaces are illustrated in (figure 51a, 51b). 

 

 
a 

 
b 

 
a – series/parallel topology of a three-sensor fusion system; b – venn diagram of series/parallel 

topology 
 

Figure 51 – Series/parallel sensor data output combination 
5.2 The proposed decision-level fusion system  
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The proposed decision-level fusion system is based on voting method, the 
series/parallel data combination was chosen as an example of voting fusion because it 
has the ability to detect targets that are suppressed and reject both naturally occurring 
false alarms from clutter and artificial decoys. It does, however, need a fusion 
algorithm that can handle decisions from sensors with various levels of confidence.  

Venn diagrams are a useful tool for illustrating the detection space (or 
classification space) of several sensors. Figure 52 depicts the detection space for a 
three-sensor system with Sensors A, B, and C. Labeled areas indicate those with one 
sensor, two sensors, or three sensors interacting. 

 

 
 

– detection modes for three-sensor system: 1 – sensors A&B&C; 2 – sensors A&В; 3 – sensors 
А&C; 4 – sensors B&C 

 

Figure 52 – The detection space for a three-sensor system with Sensors A, B, and C 
 

As Figure 52 shows, three camera sensors are connected based on the 
series/parallel topology, as well as in the center their detection space is shaded with 
black color. The main fusion combination is ABC mode, because it is the central 
connection all of the three sensors. Other modes are combinations of two sensors’ 
fusion such as AB, BC and AC, respectively. These detection modes are given below 
in (table 9).  
 
Table 9 – Multi-sensor detection modes for a three-sensor system 

 

Mode Sensor and Confidence level 
A B C 

ABC A1 B1 C1 
AC A2 - C2 
BC - B2 C2 
AB A3 B3 - 
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System detection probability. Once the detecting modes have been established, 
Boolean algebra can be utilized to construct an expression for the detection probability 
and false alarm probability of the sensor system. The system detection probability 
equation has the following form for the example above with one three-sensor mode 
and three two-sensor modes. 

 
																						𝑆𝑦𝑠𝑡𝑒𝑚𝑃= = 𝑃={𝐴-𝐵-𝐶-	𝑜𝑟	𝐴'𝐶'	𝑜𝑟	𝐵'𝐶'	𝑜𝑟	𝐴>𝐵>}.		     (5.1) 

 
Probability Axioms: 0 < p(x) < 1 
P(true) = 1 
P(false) = 0 
By repeated application of the Boolean algebra expression given by 

 
                         P (X V Y) = P(X) + P(Y ) − P(XLY )                         (5.2) 

 
(5.1) can be transformed into the expressions for difference and sum as [60, 

p. 321]: 
 
𝑆𝑦𝑠𝑡𝑒𝑚𝑃= = 𝑃={𝐴-𝐵-𝐶-} + 𝑃=	{𝐴'𝐶'	} + 	𝑃=	{𝐵'𝐶'	} + 	𝑃=	{𝐴>𝐵>	} − 𝑃=	{𝐵'𝐶'

∗ 𝐴>𝐵>} − 𝑃=	{𝐴'𝐶'𝐵'} − 𝑃=	{𝐴'𝐶' ∗ 𝐴>𝐵>} + 𝑃=	{𝐴'𝐶'𝐵' ∗ 𝐴>𝐵>}
− 𝑃={𝐴-𝐵-𝐶- ∗ 𝐴'𝐶'	} − 	𝑃=	{𝐴-𝐵-𝐶- ∗ 𝐵'𝐶'	} − 𝑃=	{𝐴-𝐵-𝐶- ∗ 𝐴>𝐵>	}
+ 𝑃={𝐴-𝐵-𝐶- ∗ 𝐵'𝐶' ∗ 𝐴>𝐵>} + 𝑃={𝐴-𝐵-𝐶- ∗ 𝐴'𝐶'𝐵'} + 𝑃={𝐴-𝐵-𝐶-
∗ 𝐴'𝐶' ∗ 𝐴>𝐵>} + 𝑃={𝐴-𝐵-𝐶- ∗ 𝐴'𝐶'𝐵' ∗ 𝐴>𝐵>}. 

 
Since the confidence levels for each sensor are independent of one another (by 

the nonnested or disjoint assumption), the applicable union and intersection relations 
are. 

The union of 𝐴	and 𝐵	is defined as 
 

𝐴∪𝐵={𝑥∈�∣𝑥∈𝐴∨𝑥∈𝐵} 

 
as the name suggests, the set combining all the elements from 𝐴 and 𝐵. 
𝐴∪𝐵 → A or B, which corresponds to OR logic function (figure 53). 
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Figure 53 – The union of two sensors 
Given two sets 𝐴	and 𝐵, define their intersection to be the set 
 

𝐴∩𝐵={𝑥∈�∣𝑥∈𝐴∧𝑥∈𝐵} 
 
it means that 𝐴∩𝐵 contains elements common to both 𝐴 and 𝐵,	which	corresponds	to	
AND	logic	function	(figure	54). 

 

 
 

Figure 54 – The intersection of two sensors 
 

𝑃={𝐴- ∪	𝐴'} = 𝑃={𝐴-} + 𝑃={𝐴'} 
 

𝑃={𝐴- ∩	𝐴'} = 0 
 
respectively. Analogous statements apply for the other sensors. 

The above relations allow (3) to be simplified to 
 

𝑆𝑦𝑠𝑡𝑒𝑚𝑃= = 𝑃={𝐴-𝐵-𝐶-} + 𝑃=	{𝐴'𝐶'	} + 	𝑃=	{𝐵'𝐶'	} + 	𝑃=	{𝐴>𝐵>	} − 𝑃=	{𝐴'𝐶'𝐵'}. 
 
The four positive terms correspond to each of the detection modes, while the one 

negative term eliminates double counting of the {A2 B2 C2} intersection that occurs 
in {A2 C2} and {B2 C2}. 

Each camera sensor can have output different confidence score values. In 
general, there are three types of confidence score values: 

– high confidence (equal to or greater than 90%); 
– medium confidence (between 70 and 89%); 
– low confidence (less than 70%). 
Below in (figure 55) three-sensor voting logic function’s hardware 

implementation is structured based on the confidence levels of each sensor. As in the 
ABC mode all three sensors participate in the voting, this mode gives the correct result 
even in low confidence value. For the case of AB mode two high confidence values 
from A and B sensors are taken. As well as for AC and BC modes medium confidences 
of A and B sensors and high confidence from C sensors are considered.  
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Figure 55 – Three-sensor voting logic fusion  
 
Note – Compiled according to the source [60, p. 326] 
 
Since the research work uses camera sensor in UAV detection, all three sensors 

used here are visual data based camera sensors. Two of the three sensors are panoramic 
cameras – Panasonic WV-SF448E (WV-SF448E), and the third one is а Sony HDR 
CX-405. The camera sensors planning and their angles are illustrated below (figure 
56). 

 

 
 

Figure 56 – Camera sensors planning 
 
Below the parameters of each camera and its scene are illustrated (figure 57). 
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Figure 57 – The angle of camera C 
 

Note – Camera resolution 1920x1080, focal length 2.4 meters, camera height 9 meters, camera 
pixel density 45 pixels/m 

 
The view from camera C is depicted in (figure 58). The camera’s resolution is 

1920x1080. The camera is installed in 9 meters.   
 

 
 

Figure 58 – View from camera C 
 

Sensor A (figure 59).  
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Figure 59 – The angle of camera A 
 

Note – Camera resolution 1920x1080, focal length 0.84 meters, camera height 9 meters, 
camera pixel density 27x15 pixels/m 

 
The view from camera A is depicted in (figure 60). The camera’s resolution is 

1920x1080. The camera is installed in 9 meters.   
 

 

 
 

Figure 60 – View from camera A 
 
Sensor B (figure 61). 
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Figure 61 – The angle of camera B 
 

Note – Camera resolution 1920x1080, focal length 0.84 meters, camera height 9 meters, 
camera pixel density 25x14 pixels/m 

 
The view from camera B is depicted in (figure 62). The camera’s resolution is 

1920x1080. The camera is installed in 9 meters.   
 

 
 

Figure 62 – View from camera B 
 

The main condition in fusion of three camera sensors as below: 
If IoU<0.5, then output of each camera sensor is 0. 
If IoU³0.5, then output of each camera sensor is 1. 
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Based on these conditions following final result can output different class labels 
(table 10).  

 
Table 10 – Sensor fusion results based different input values 

 
Sensor inputs Output A B C 

0 0 0 0, class label “No drone” 
0 1 1 1, class label “Drone”, Alert 
1 0 1 1, class label “Drone”, Alert 
1 1 1 1, class label “Drone”, Alert 

 
Below these results were obtained on the platform UnityPro (SchneiderElectric), 

(figures 61, 62, 63). 
  

 
 

Figure 61 – The case when the drone is flying in the area of camera A and C 
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Figure 62 – The case when the drone is flying in the area of camera C 
 

 
 

Figure 63 – The case when in drone is flying in the center, and all cameras can 
capture it  

 
Chapter’s conclusion. This chapter presented a proposed a decision-level based 

sensor fusion system based on voting method. Different configurations of sensor 
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integration were analyzed and a common decision result was considered by voting the 
output results of several camera sensors. Multi-sensor detection modes for a three-
sensor system were determined. Three camera system was chosen in order to escape 
the blind spots.  
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CONCLUSION 
 
This dissertation work has focused on research of effective UAV detection using 

optical sensors. The five chapters were considered as below: 
The first chapter is dedicated on detailed theoretical anaclasis started from 

security UAV threats to literature review of related works on UAV detection and 
classification methods based on different drone detection technologies. Particular 
attention is paid to methods for detecting and classifying UAVs based on visual data, 
since this work is devoted to the study of effective UAV detection using image sensors. 

The second chapter focused on image acquisition, video signal processing 
methods, Image processing techniques, as well as data preparation steps.  

In the third chapter, moving object detection based two-points background 
subtraction and moving object classification methods with the help of deep CNN neural 
networks were analyzed. The scientific results of the research direction of recognizing 
and classifying the visual data of the unmanned aerial vehicle were systematically 
compared through literature reviews. 

The fourth chapter considers a real-time approach for drone detection that is 
comparable to current algorithms. It was clarified that dividing the drone detection task 
into the detection and classification steps can solve the given task effectively. The 
results of the experiment demonstrated both the benefits and drawbacks of the proposed 
approach. The main limitation of the proposed detector lies on its heavily influenced 
performance on the moving background existence. In order to solve this limitation and 
reach higher detection accuracy the next chapter is dedicated to a sensor fusion 
approach combining multi-angle visual information from several camera sensors.  

In the fifth chapter, a decision-level based sensor fusion system was proposed 
based on voting method. Different configurations of sensor integration were analyzed 
and a common decision result was considered by voting the output results of several 
camera sensors. 

As a result of the work, all the set tasks have been fulfilled, the relevance, 
scientific novelty and practical importance of the research work have been fully 
revealed and proven in the dissertation work. And as an application of the work, a 
scientific project for "National Security and Defense" was won on the basis of the 
competition, and currently the research continues as a future work based on the bimodal 
method combining LiDAR and camera sensors. 
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