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NOMENCLATURE 
 
ASP = alkaline surfactant polymer; 
ATBS = Acrylamide-Tertiary-Butyl Sulfonate;  
bbl = barrel;  
BHP = bottom-hole pressure, bar; 
Ci = concentration of polymer solution injected, unit fraction; 
cp = centipoise (dynamic viscosity unit); 
Cp = concentration of polymer in the produced sample, unit fraction; 
DI = depletion intensity, fraction; 
Dsample = formation sample depth, cm; 
EOR = enhanced oil recovery; 
ESP = electrical submersible pumps; 
FDP = field development project;  
ft/d = feet per day;  
fw = fractional water curve or watercut, fraction; 
h = perforation thickness, m; 
Hoil = oil formation height, m; 
HPAM = partially hydrolyzed polyacrylamide;  
IAPV = inaccessible pore volume’  
IFT = interfacial tension, mN/m; 
ILT = injection logging test; 
IOP = incremental oil production for 5 years, thousand tonnes; 
IPR = inflow performance relationship;  
IRR = internal rate of return, %; 
JSC = joint stock company;  
K layer = formation layering or compartmentalization index, dim.; 
kro = relative permeability by oil, fraction; 
krw = relative permeability by water, fraction; 
LLP = limited liability partnership;  
M = bulk mass of the core, g; 
md = millidarcy (rock permeability unit);  
MD = measured depth;  
MW = molecular weight, Daltons;  
NPV = net present value, million KZT; 
NTG = net-to-gross, fraction; 
NVP = N-Vinyl-Pyrrolidone; 
ø = porosity, unit fraction; 
OOIP = original oil in place; 
OPEX = operational expenditure; 
P = polymer; 
PAM = polyacrylamide; 
PCP = progressing-cavity pump; 
PF = polymer flood;  
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PI = profitability index, dim.; 
PLT = production logging test; 
ppb = parts per billion; 
ppm = parts per million; 
psi = pounds per square inch;  
PSU = polymer slicing unit;  
PV = pore volume, %; 
PVT = pressure volume temperature; 
R = retention, µg/g; 
RF = recovery factor, fraction; 
RF = resistance factor, dim.; 
RoK = Republic of Kazakhstan; 
RRF = residual resistance factor, dim.; 
SAGD = steam assisted gravity drainage;  
SCAL = special core analysis; 
Sor = residual oil saturation, unit fraction; 
SE = sweep efficiency;  
SP = surfactant polymer; 
STOIIP = stock tank oil initially in place;  
Sw = water saturation, fraction; 
Swc = connate water saturation, unit fraction; 
TAN = total acid number, mg KOH/g; 
TDS = total dissolved solids, ppm; 
TSS = total suspended solids, ppm; 
UL = ultra low;  
USA = United States of America;  
USD = United States Dollars;  
V pi = productivity indexes variation, dim.; 
Vcasing = volume between tubing end and perforation bottom, m3; 

Vf = volume back-produced from formation, m3; 
Vp = back-produced volume, m3; 

Vtubing = tubing inner volume, m3; 

w = fracture width, m; 
W = weight of polymer injected; 
WCT = watercut, fraction; 
Y = weight of fluid produced and analyzed, g.  
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INTRODUCTION 
 
General overview. Only 3-5% of global oil production can be attributed to 

enhanced oil recovery (EOR) [1]. This fraction is expected to grow, even for 
reservoirs with harsh conditions that do not allow for efficient oil production [2]. 
There are commonly several directions of EOR [3]: gas (CO2, N2, hydrocarbon, 
immiscible), thermal (steam, hot water, in-situ combustion, SAGD), chemical 
(polymer (P), surfactant polymer (SP), alkaline surfactant polymer (ASP) floods) 
and others (microbiological). Gas injection is used as an agent for a pressure 
maintenance system, and usually starts near the beginning of the field production 
(secondary recovery). Also, a central aspect is the availability of a gas source. For 
example, most EOR gas projects in the USA, Canada, and China are neighboring 
huge CO2 reservoirs/fields [4; 5]. Some operators inject gas for utilization purposes 
and mask it as an EOR technique [6; 7; 8]. Thermal EOR is generally effectively 
applicable for heavy oil fields, where viscosity ranges from 100-10 000 cp or even 
higher. But implementation of thermal methods is mainly limited by heat losses [9; 
10; 11]. Heat losses can occur due to the initial reservoir condition (high thermal 
conductivity of the upper and/or lower impermeable layers, reservoir depth), 
development stage (high formation water saturation near injection wells), and 
infrastructure (well construction type, completion, tubing). Also, another critical 
issue is the obtainability of the freshwater source. In contrast, chemical EOR does 
not have the limitations mentioned above. Hence it has been widely used in 
sandstone fields, especially at the late development stage. Furthermore, polymer 
flooding (PF) is often the most feasible chemical EOR technology. Especially, 
polymer flooding has prominance, where ASP/SP flooding is not profitable and 
causes serious on-site problems (scaling, uptime decrease, injectivity issue, hard-to-
break emulsions) [12; 13; 14; 15]. The principle of polymer flooding is to increase 
the viscosity of injected water and thereby develop a more favorable mobility ratio 
between displacing water and oil in place [16]. This approach reduces or avoids 
water fingering caused by geological heterogeneity [17]. 

The relevance of the work. The majority of giant oil fields in Kazakhstan are 
entering or already in the brownfield development stage, and the Kalamkas oilfield 
is one of them. The field was discovered in 1976 and developed commercially since 
1979 according to the Field Development Project – FDP [18]. Oil and gas reservoirs 
were established in Jurassic deposits. Reservoirs mainly consist of sandstones 
deposited in deltaic, fluvial, and shallow marine environments. The reservoirs' main 
geological and physical features are highly-layered heterogeneity and unfavorable 
mobility ratio (>7) in reservoir conditions. The permeability ranges from 0.055 to 
1.273 Darcy. The oil viscosity is at least 16 cp at reservoir temperature (38-43°C). 
These factors explain non-uniform depletion and relatively low recovery factor for 
the Kalamkas oilfield. To date, the water cut is significantly higher than expected 
considering the depletion of recoverable reserves. 

To improve hydrocarbon production and enhance oil recovery, a polymer flood 
pilot design started in 2011. The design of the injected polymer viscosity was based 
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on the optimum economic output (i.e., net present value) according to reservoir 
modeling and feasibility studies, and on concepts presented in literature sources [19; 
20]. Pilot projects were conducted since September 2014. As a result, pilots showed 
no injectivity loss; polymer injection unit up-time high; sweep efficiency increased 
(based on injection and production logging tests); water-cut decreased to 10%; and 
oil production rates doubled. The estimated incremental recovery factor over 
waterflood was 9% [21]. 

Although polymer flooding worldwide has been applied ~60 years, and it still 
requires further investigation to provide improvements. Thus, this dissertation 
describes a systematic approach investigation for improving polymer flood 
technology at the Kalamkas field. The systematic approach investigation includes 
the combination of data analysis, laboratory studies, field observations, numerical & 
analytical modeling, and feasibility studies. 

Research Objectives. The objective of this dissertation was to investigate 
polymer flood at the Kalamkas field to develop a systematic approach for improving 
technology. Therefore, the research scope of this dissertation was focused on the 
following aspects: 

1. A comprehensive literature review of recent worldwide polymer EOR 
projects focusing on the Kalamkas field polymer flood aspects.  

2. Assess polyacrylamide solution chemical and mechanical stability during a 
polymer flood in the Kalamkas field. 

3. Develop a novel method for the field assessment of polymer degradation 
during a polymer flood of an oil reservoir.  

4. Experimental and numerical studies of the Kalamkas polymer flood 
technology. Examine the oil recovery at various simulation scenarios.  

5. The Kalamkas polymer flood projects feasibility studies and choose most 
rational scenario for full field deployment. 

Novelty. The novelty in this work resides in field demonstration of the correctness 
of previous conceptual ideas—(1) that the vertical HPAM injection wells contained 
fractures that were necessary for polymer injection, (2) that the fractures 
substantially reduced mechanical degradation, and (3) that injected polymer 
solutions were quickly stripped of dissolved oxygen (thereby promoting oxidative 
stability). These demonstrations have value in countering arguments by others [26; 
27; 28; 29] that polymer injectivity into vertical wells could be acceptable without 
fractures. To our knowledge, this is the first published report demonstrating that 
backflowed HPAM samples from an injection well showed no detectable dissolved 
oxygen. Also, to our knowledge, this is the first published report demonstrating that 
backflowed samples from an injection well showed no HPAM mechanical (or 
oxidative) degradation. Finally, we developed an unconventional approach to model 
a polymer flood that can be used to optimize technology at the Kalamkas field.  

Defending hypotheses:  
1. Vertical HPAM injection wells contained fractures that were necessary for 

polymer injection. And these fractures substantially reduced polymer 
mechanical degradation. 
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2. Injected polymer solutions were quickly stripped of dissolved oxygen, 
thereby promoting oxidative (or chemical) stability. 

3. At Kalamkas conditions, residual resistance factor (RRF) is not 
significantly different from unity, i.e., post chase water injection will not 
benefit oil recovery. Therefore, polymer injection should be underway as 
far as net present value (NPV) is positive.  

4. Polymer flood at oil price volatility is a long-term project that extends the 
field's economically feasible lifetime and enhances oil recovery. 

Practical value. A developed novel method for the field assessment of polymer 
degradation can be used to understand in-situ polymer EOR mechanisms better. 
Provided mitigation plan to eliminate chemical degradation that can save 25% of 
OPEX at the Kalamkas field conditions, thereby improving project economics. In 
addition, a novel approach to model polymer flood can be used to optimize polymer 
injection parameters, thereby improving technology efficiency. 

Personal contribution. The dissertation's author contribution consists of the 
literature review, geological & reservoir dynamics data analysis, laboratory studies, 
field observations, and numerical & analytical modeling. The research results 
presented in the dissertation were obtained by the author personally or with his direct 
participation. Finally, the author formulated conclusions and recommendations.  

Approbation. The main results of the dissertation were reported and discussed at 
the following conferences and workshops: International Scientific Conference 
"Satbayev Readings – 2020" and "Satbayev Readings – 2021" (Kazakhstan, Almaty, 
April 2020 and April 2021); SPE Virtual Improved Oil Recovery Conference (USA, 
Tulsa, April 2022); Workshop organized by GazPromNeft "Chemical Enhanced Oil 
Recovery: challenges and prospects" (Russia, Kazan, June 2022); International 
Scientific Conference titled “Prospects for the use of chemical methods for enhanced 
oil recovery (cEOR) at a late stage of development” (Kazakhstan, Astana, September 
2022). 

Publications. The main hypotheses of the dissertation have been published in 7 
articles, which include 1 – in the Scientific Journal cited in the Scopus base (Q1, 94 
percentile), 2 – in the Scientific Journals listed in the recommended by the 
Committee for Quality Assurance in the Sphere of Education and Science of the 
Ministry of Science and Higher Education RoK, 3 – International Conferences, 1 – 
Patent for the utility model (KazPatent): 

1. Sagyndikov, M., Seright, R.S., Kudaibergenov, S., and Ogay, E. 2022. Field 
Demonstration of the Impact of Fractures on Hydolyzed Polyacrilamide 
Injectivity, Propagation and Degradation. SPE Journal 27 (02): 999-1016. 
SPE-208611-PA. https://doi:10.2118/208611-PA 

2. Sagyndikov, M., Kushekov, R.M., Seright, R.S. 2022. Review of Important 
Aspects and Performances of Polymer Flooding versus ASP Flooding. Bulletin 
of the Karaganda University Chemistry Series 107 (3): 35-55. 
https://doi.org/10.31489/2022Ch3/3-22-13 

3. Sagyndikov, M., Salimgarayev, I., Ogay, E., Seright, R.S., Kudaibergenov, S. 
2022. Assessing polyacrylamide solution chemical stability during a polymer 

https://doi:10.2118/208611-PA
https://doi.org/10.31489/2022Ch3/3-22-13


8 
 

flood in the Kalamkas field, Western Kazakhstan. Bulletin of the Karaganda 
University Chemistry Series 105 (1): 99-112. 
https://doi.org/10.31489/2022Ch1/99-112 

4. Sagyndikov, M., Seright, R.S., Tuyakov, N. 2022. An unconventional 
approach to model a polymer flood in the Kalamkas oilfield. Paper presented 
at the SPE Virtual Improved Oil Recovery Conference to be held 25-29 April 
2022. SPE-209355-MS. https://doi.org/10.2118/209355-MS  

5. Sagyndikov, M., Imanbayev, B., Salimgarayev, I., Baipakov, S. 2022. Method 
for the field assessment of polymer degradation during a polymer flood of oil 
reservoir. Patent for Utility Model №7054, National Institute Of Intellectual 
Property RoK (in Russian) – APPENDIX A.  

6. Sagyndikov, M., Ogay, E., Kudaibergenov, S. 2021. Feasibility study of 
polymer flooding application in the heavy oil reservoir. Proceedings of the 
International Scientific Conference "Satbayev Readings – 2021" (in Russian) 

7. Sagyndikov, M., Ogay, E., Kudaibergenov, S. 2020. Evaluation of Polymer 
Flooding Efficiency at Brownfield Development Stage of Giant Kalamkas 
Oilfield, Western Kazakhstan. Proceedings of the International Scientific 
Conference "Satbayev Readings – 2020" 

Dissertation Organization. The dissertation is composed of six chapters. The 
introduction presents the general overview, relevance, objectives, hypotheses, and 
dissertation organization. Chapter I provides the Kalamkas oilfield geological 
properties and reservoir dynamics features. Chapters II, III, IV, and V are based on 
published papers, of which I am the first author, about topics of the Kalamkas 
polymer flood key aspects and EOR technology optimization. Chapter VI is 
conclusions. A summary of each chapter is shown as follows: 

Chapter II is a comprehensive literature review of recent worldwide polymer EOR 
projects. Chapter III examines polymer in-situ mechanical stability and describes the 
development of a novel method for the field assessment of polymer degradation 
during a polymer flood of an oil reservoir. Chapter IV assesses polymer chemical 
stability and recommends mitigating viscosity loss and optimizing OPEX. Chapter 
V describes an unconventional approach to model a polymer flood at the Kalamkas 
oilfield. 

The total volume is 116 pages, including 55 figures, 27 tables, references of 168 
titles, and 6 appendices. 
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1. THE KALAMKAS OILFIELD OVERVIEW 

1.1 The Kalamkas oilfield geology and reservoir development features 
 
This dissertation research object is related to the Kalamkas oil and gas field. The 

Kalamkas field, situated in the western part of Kazakhstan, was discovered in 1976 
and brought on stream in 1979 according to the Field Development Project – FDP 
[18]. Oil and gas reservoirs were established in the Jurassic deposits, and Cretaceous 
deposits have massive gas and water reservoirs (Figure 1.1). Reservoirs mainly 
consist of sandstones deposited in deltaic, fluvial, and shallow marine environments. 

 

 
Figure 1.1 — Geological profile of the Kalamkas field 

 
Taking into account the difference between reservoir pressures and bubble point 

pressures (2-3 MPa), predicted liquid production under the natural depletion, and 
other geological features, an FDP was designed with the following scenario: 

• A uniform 9-spot pattern with 400-m well spacing. 
• Well orientation – vertical. 
• Pressure maintenance (or injection) started from the beginning of the 

development. 
• The voidage replacement ratio was typically 100-120%. 
• The injected water was either produced Jurassic brine and Cretaceous water 

reservoir brine. 
• The injection bottom hole pressure (BHP) was below the initially measured 

formation parting pressure (12-14 MPa). 
• Production BHP was not allowed to drop below the bubble point pressure 

(5-7 MPa). 

Gas
Oil
Water

Cretaceous

Jurassic
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Oil reservoirs have a high layered permeability contrast (>4) and unfavorable 
water-oil mobility ratio (M>7), which jeopardizes uniform depletion and oil 
recovery. To date, the water cut is significantly higher than expected considering the 
depletion of recoverable reserves (Figure 1.2). (In this case, the depletion of 
recoverable reserves is defined as a percentage ratio of cumulative oil production 
and recoverable oil reserves.)  

 

 
Figure 1.2 — History of the water cut versus recoverable reserves depletion for the Kalamkas 

field. 
 

In contrast, high average formation permeability (>500 md) and relatively low 
reservoir temperature (40°C) attract the implementation of chemical enhanced oil 
recovery (EOR) methods, such as polymer flooding. In view of the low reservoir 
temperature, elevated mobility ratio, and high formation permeability, it was 
recognized that there is considerable potential for enhancing oil production by 
polymer flooding. For this reason, the Kalamkas polymer flood history started in 
1981 [21]. Polymer flood was implemented as a secondary recovery method and 
utilized in 46 injection wells [22]. During 1981-1989 injected ~10 000 tons of dry 
HPAM or 8 million m3 of polymer solution, incremental oil production by polymer 
flood was 1,16 million tons, with an average polymer utilization factor of 118 t/t 
(i.e., 118 tons of incremental oil is produced per 1 ton of polymer injected.) 
Kalamkas polymer flood project by scale and innovation was a pioneer in the Soviet 
Union. However, this effective EOR technology expansion was stopped due to the 
economic crisis. 

After 25 years of intensive waterflooding, tertiary polymer flood was considered 
to enhance oil recovery at the brownfield development stage. Although polymer 
flood is not novel technology for the Kalamkas field, implementation at the late stage 
of development first needs a pilot to prove its feasibility [23; 24]. 

 1.2 The Kalamkas Oilfield Polymer Flood Present State 
Recent tertiary pilot tests was initiated September 2014 in two injectors in the 

West part of the field and the second in four injectors in the East part of the field, 
beginning March 2015 [25; 30]. The West pilot includes 2 injectors with a 9-spot 
pattern (red rectangle in Figure 1.3) as projected in the FDP, and the East pilot 
includes 4 injectors (red square in Figure 1.3) with an infilled 5-spot pattern. Based 
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on the pilots' results, the East polymer project was extended to the existing 9-spot 
well patterns using 11 injectors (blue polygon in Figure 1.3). The earliest 4 polymer 
injectors of the East pilot were returned to waterflooding.  

 

 
Figure 1.3 — Polymer flood project locations in the Kalamkas structural field map 

 
West pilot was chosen with criteria to represent field-wide reservoir 

characteristics throughout Kalamkas oilfield. Accordingly, the reservoir at the pilot 
area has similar characteristics as whole Kalamkas oilfield with high layered 
heterogeneity (variation 1.6) and unfavorable oil-water viscosity ratio in reservoir 
conditions (>28). The permeability range is very wide with highest permeability of 
more than 2 000 md where average is 946 md (see Table 1.1). 
 
Table 1.1 — Reservoir characteristics of the Kalamkas field and polymer flooding pilot area 

#  Parameters West PF pilot Kalamkas field 
1 Reservoir average TVD, m 746 725-879 
2 Average permeability, md 946 55 – 1 273 
3 Permeability variation degree, dim. 1,6 0,28-2,6 
4 Vertical heterogeneity, dim. 3,3 1,15-3,41 
5 Porosity, % 28 21-29 
6 Initial oil saturation, % 70 50-71 
7 Reservoir temperature, ºC 39 38-43 
8 Initial reservoir pressure, MPa 9,3 9,18-9,53 
9 Bubble-point pressure, MPa 7 5,1-7,2 

10 Gas solubility, m3/t 30,8 21-32,9 
11 Reservoir oil density, g/cc 0,874 0,833-0,893 
12 Pour point, ºC -18 -15 - -20 
13 Paraffin content, % 2,8 2,6-3,8 
14 Sulphur content, % 1,09 1,21-1,45 
15 Formation water salinity, g/l 118 101-121 
16 Reservoir oil viscosity, cp 23,3 15,6-31 
17 Reservoir water viscosity, cp 0,8 0,8 

 
Table 1.2 provides a detailed chemical composition of the Cretaceous formation 

brine used in the polymer-solution injection process. This process includes preparing 
the mother solution and diluting it to the target concentration. The special production 
wells from a Cretaceous water reservoir supply the brine for West and East polymer 
flooding projects. We recognize that the formation salinities are quite high and that 
HPAM provides much more cost-effective viscosity in low-salinity brine than in 
high-salinity brine. Nevertheless, polymer flooding with HPAM under the 
conditions at Kalamkas still provides a substantial economic benefit. Further, given 
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the price and (lack of) availability of biopolymer (i.e., xanthan, scleroglucan, 
schizophyllan), the use of HPAM is still more cost-effective than alternatives. 
 
Table 1.2 — The Kalamkas field formation brine physical and chemical properties 

Parameter 
Jurassic formation brine 

(from the production well) 
Cretaceous formation brine 
(used for polymer dilution) 

West Producer XX94 East Producer XX29 West PF East PF 
pН 6.1 6.3 5.8 6.1 
Density, g/cm3 1.089 1.081 1.072 1.080 
Са2+ content, ppm 4 500 4 400 4 609 5 410.8 
Mg2+ content, ppm 2 640 2 400 2 189 2 432.0 
Total salinity (TDS), ppm 136 211 123 445 98 722 108 913.7 
Water type by Sulin Cl-Ca Cl-Ca Cl-Ca Cl-Ca 
Water hardness, mg-eq/l 445 420 410 470 
Fe2+ content, ppm 14 7.6 39.2 22.4 
Fe3+ content, ppm 32 37 1.4 2.8 
Total suspended solids (TSS) 
content, ppm 

not measured not measured 14.0 12.0 

Dissolved oxygen content, 
ppm 

not measured not measured 01 01 

1 dissolved oxygen content measuring with CHEMets® express tests shows the undetectable value (less than 
0.025ppm or 25 ppb) 

 
The dissolved oxygen level has been measured at the wellhead of the water 

production well and the storage water tank of the polymer injection unit using 
CHEMets® colorimetric tests. Tests results reveal that the formation brine dissolved 
oxygen level is undetectable (less than 0.025 ppm or 25 ppb). This finding is 
consistent with the fact that Kalamkas oil reservoirs have a reducing environment 
due to iron-containing minerals up to 2-4% [31]. As can be seen from the brine 
chemical analysis, the brine has high salinity and high content of divalent cations 
(Ca2+, Mg2+, Fe2+). The field brine iron content varies between 20-40 ppm. 
Consistent with Seright and Skjevrak (2015) experimental work [32], polymer 
solution viscosity losses at Kalamkas field conditions should be insignificant if the 
initial dissolved-oxygen concentration is 200 ppb or less. 

At the Kalamkas field West pilot and East Extension polymer flood projects are 
using Polymer Slicing Unit (PSU) for the solution preparation and injection (Figure 
1.4). For the East Pilot is using eductor-type unit, which will be shown in details in 
Chapter 4.  

The PSU reduces the polymer particle size to a uniform and allows for 
significantly higher polymer concentrations [33] up to 1.5% or 15 000 ppm. In this 
unit, a polyacrylamide powder inlet is located at the upper part to supply polymer by 
gravity force (positive pressure) to the screw pump and PSU. The unit is completely 
isolated from air by a nitrogen blanketing system An individual low-shear pump was 
used for each injection well. The PSU at the Kalamkas field conditions shows high 
unit uptime [21]. Two powder-form partially hydrolyzed polyacrylamides (HPAM) 
(SNF products) were used: Superpusher K-129 (West Pilot) and Polyacrylamide R-
1 (East Extension) They had a molecular weight of 14 million Daltons and a 
hydrolysis degree of 16%.These polymers are commercially available products. The 
chemical stability and good dissolving quality of the polymer were demonstrated 
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during the experimental work of Seright and Skjevrak (2015) [32] with polymers 
and conditions similar to those in our application. 

 

 
Figure 1.4 — Main components of the polymer solution injection unit. 

 
Polymer Flood Performance. As mentioned earlier, West pilot was the first 

polymer flood project implemented at the Kalamkas field. The West pilot consists 
of 23 vertical producers and 2 vertical injectors (Figure 1.5). Production from the 
pattern began in June 1985 via the first drilled producer, and water injection began 
in July 1986 via the first vertical injector. According to the FDP pattern, initial 
drilling was completed in September 1990 with 400 m well spacing (17 producers 
and 2 injectors). Later, in 2011-2014 pattern was infilled with 6 producers with a 
spacing 200 m.  

Before polymer flood for ~30 years of reservoir development сumulative oil 
production was 1 660 726 ton, cumulative liquid production – 6 831 612 ton, 
cumulative water injection – 3 604 614 m3, and average water cut reached 90 %.  

 

 
Figure 1.5 — West Pilot polymer flood pattern (red rectangle area) on the current oil production 

bubble map as of September 2014 (before polymer flood) 
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Polymer flood began in September 2014 with the same injection rate as a water 
flood. Injecting polymer concentration was 1 800 – 1 900 mg/L with average 
viscosity of 20-22 cp (shear rate 7.34 1/s and T=25ºC). The watercut responded 
shortly after polymer solution injection and decreased 10% relative to the baseline. 
Polymer injected 20% of pattern pore volume, and no polymer production was 
observed. The incremental oil production was evaluated based on Buckley-Leverett 
fractional flow calculations [35], called “Displacement Characteristics.” The West 
pilot pattern oil production and watercut response are shown in Figure 1.6. 

The total incremental oil production by polymer flood was 303 214 tons, with an 
average polymer utilization factor of 97 t/t (i.e., 97 tons of incremental oil is 
produced per 1 ton of polymer injected.) Recovery factor enhanced by polymer flood 
for 5.2% and estimated 9% at the end of the project. Feasibility studies show an 
internal rate of return (IRR) – 131.5%, profitability index (PI) – 2.6, and payback 
period – 2.9 years. 

 

 
Figure 1.6 — Incremental oil production dynamics of West polymer flooding pilot 

 
Additionally, for polymer flood efficiency assessment, we have analyzed the 

following oilfield data: cumulative and monthly production-injection data, oil 
reserves depletion, production logging test (PLT), injection logging test (ILT) 
interpretations before and after polymer flooding. 

Figure 1.7 shows oil cut dynamics versus recoverable reserves depletion for the 
West polymer flood pilot pattern. Theoretical oil cuts at different mobility ratios are 
calculated based on Lysenko and Graifer's (2005) work [35; 36]. As shown in the 
Figure below, the mobility ratio before polymer flood was around 7, then decreased 
to 2 and further decline is expected.  

40,0

50,0

60,0

70,0

80,0

90,0

100,0

0,000

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

01
.0

1.
20

10

01
.0

5.
20

10

01
.0

9.
20

10

01
.0

1.
20

11

01
.0

5.
20

11

01
.0

9.
20

11

01
.0

1.
20

12

01
.0

5.
20

12

01
.0

9.
20

12

01
.0

1.
20

13

01
.0

5.
20

13

01
.0

9.
20

13

01
.0

1.
20

14

01
.0

5.
20

14

01
.0

9.
20

14

01
.0

1.
20

15

01
.0

5.
20

15

01
.0

9.
20

15

01
.0

1.
20

16

01
.0

5.
20

16

01
.0

9.
20

16

01
.0

1.
20

17

01
.0

5.
20

17

01
.0

9.
20

17

01
.0

1.
20

18

01
.0

5.
20

18

01
.0

9.
20

18

01
.0

1.
20

19

01
.0

5.
20

19

01
.0

9.
20

19

01
.0

1.
20

20

01
.0

5.
20

20

01
.0

9.
20

20

01
.0

1.
20

21

01
.0

5.
20

21

01
.0

9.
20

21

01
.0

1.
20

22

01
.0

5.
20

22

Injected pore volume, unit fraction

W
at

er
cu

t, 
%

O
il 

pr
od

uc
tio

n,
 1

0^
3 

t

Дата
Добыча нефти при ПЗ, тыс.т Добыча нефти базовая с учетом ИДН, тыс.т Начало ПЗ

Добыча нефти базовая без ИДН,тыс.т Обв-ть факт-прогноз при ПЗ, % Обв-ть базовая, %



16 
 

 
Figure 1.7 — Oil cuts actual and at different mobility ratios for the West polymer flood pilot 

 
Figure 1.8 plots recovery factor vs. main reservoir dynamic indicators, i.e. 

watercut, oil/liquid production and injection rates. This figure respresents reservoir 
dynamics where development phases defined based on work [37]. The buildup phase 
(I) and plateau phase (II) are commingled, and it is a common image for the viscous 
and heterogeneous oil reservoirs. At those phases (I and II) recovery factor (RF) 
reaches 3% and watercut varied between 10-20%. Next, the drawdown phase (III) is 
characterized by an intensive water cut increase caused by water breakthrough 
shortly after water injection starts. At phase III watercut increased from 10% to 90% 
and RF reaches 21.3%. End of phase III indicated by significant watercut slope 
decrease and starting of brownfield phase (IV). Watercut at phase IV steadly and 
slowly increased. When recovery factor reaches 28.2% and watercut 90% polymer 
flood started. Polymer flood phase (V) characterized by noticeable watercut 
reduction and doubled oil rate. This phase can be called the new development stage, 
which extending the oilfield's' economic lifetime. 

 

 
Figure 1.8 — Impact of conducting the polymer flooding pilot to the reservoir development 
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To obtain valuable well logs data, we proposed and ran ILT in injection wells and 
PLT in production wells. Figure 1.9 shows ILT results from XX41, XX49 injector 
wells before and after polymer flooding. There is an increase of vertical sweep 
efficiency approximately from 26% to 50% and 28% to 77% for XX41 and XX49 
injector wells respectively. As observed, the polymer flooding process was able to 
redistribute the injected agent to maintain reservoir pressure in previously unaffected 
zones of the reservoir. It should be noted that the sweep efficiency of other injector 
wells drilled to reservoir J-C1 is much lower than polymer flooding pilot injector 
wells (Table 1.3). 

The PLT interpretations from production wells are described in work [38]. 
According to the PLT interpretations, based on the flow contribution characteristics 
and amount to perforated intervals, production wells can be divided into the 
following categories: 

- wells, where sweep efficiency is decreasing by blocking of washed water zones 
and increasing of the amount of oil; 

- wells, where there is a redistribution of production profile and increasing of 
sweep efficiency; 

- wells, were no dynamic change (constant flow profile and characteristics). 
Our results show that there is an improvement of vertical sweep efficiency in 

injector wells and the blocking of washed water zones in production wells. The 
polymer flooding process was able to equally redistribute the injected agent to 
maintain reservoir pressure in previously unaffected zones of the reservoir. 

 

 
   (a)      (b) 

Figure 1.9 — Comparison of ILT acquired before and after the polymer flooding from wells 
XX41 (a) and XX49 (b) 
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Table 1.3 — ILT results of reservoir J-C1 injectors and wells ХХ41 и ХХ49 
Parameters Reservoir J-C1 Well XX41 Well XX49 

Sweep efficiency 
Number of ILT 30 3 2 

Arithmetical mean 42% 48% 72% 
Variation 0,51 0,1 0,1 

Max 90% 52% 77% 
Min 14% 43% 67% 

Average by thickness 39% 48% 72% 
 

1.3 Chapter Conclusions 
 

The Kalamkas oil reservoirs have a high layered permeability contrast (>4) and 
unfavorable water-oil mobility ratio (M>7), which jeopardizes uniform depletion 
and oil recovery. In view of the low reservoir temperature, elevated mobility ratio, 
and high formation permeability, it was recognized that the Kalamkas field has 
considerable potential for enhancing oil production by polymer flooding. 

The Kalamkas polymer flood pilot conducting since 2014 and shows high 
technical and economic success. The following major performances were noted: 

- HPAM polymer shows good dissolving quality and high uptime in injection 
units (PSU). 

- The watercut responded shortly after polymer solution injection and decreased 
10% relative to the baseline. 

- PLT/ILT studies show an increase in sweep efficiency. 
- A comparison of theoretical and actual oil cuts shows a decrease in mobility 

ratio.  
- Polymer injected 20% of pattern pore volume, and no polymer production was 

observed. 
- The total incremental oil production by polymer flood was 303 214 tons, with 

an average polymer utilization factor of 97 t/t. 
- Recovery factor enhanced by polymer flood for 5.2% and estimated 9% at the 

end of the project. 
- Feasibility studies show an internal rate of return (IRR) – 131.5%, profitability 

index (PI) – 2.6, and payback period – 2.9 years. 
Taking into account above mentioned polymer flooding is a perspective EOR 

technique for the Kalamkas field that requires further development. The 
development requires (1) a comprehensive literature review of recent worldwide 
polymer EOR projects focusing on the Kalamkas field polymer flood aspects, (2) 
assess polyacrylamide solution chemical and mechanical stability, (3) experimental 
and numerical studies of the Kalamkas polymer flood technology for examining the 
oil recovery at various simulation scenarios, (4) feasibility studies for choosing the 
most rational concept for full field deployment.  



19 
 

2. REVIEW OF IMPORTANT ASPECTS AND PERFORMANCES OF 
POLYMER FLOODING VERSUS ASP FLOODING 

2.1 Introduction 
 
The principle of polymer flooding is to increase the viscosity of injected water 

and thereby develop a more favorable mobility ratio between displacing water and 
oil in place [16]. This approach reduces or avoids water fingering caused by geologic 
heterogeneities [17]. The favorable conditions for effective implementation of 
polymer flooding have been changed and improved by the augmented understanding 
of its mechanism over the last 60 years. The aim of this chapter is to understand how 
the range of these conditions has changed and the current stage of development. The 
chapter reviews some parameters such as oil viscosity, reservoir temperature, 
permeability, water ion composition, salinity, polymer concentrations, and injected 
volumes. Observations on required injection volumes have been described based on 
the Kalamkas oilfield experience. Water source selection has an essential role during 
pilot/field project design and is one of the most responsible technical and economic 
success decisions. Polymer slug design has been extensively analyzed, and it has 
been shown that achieving a unit oil-polymer viscosity ratio is not required, 
especially for high viscosity oil fields. Nevertheless, achieving a unit mobility ratio 
is desirable (to minimize viscous fingering), although it is not always practical 
because of injectivity constraints. Therefore, we placed significant emphasis on 
clarifying observed high polymer injectivities. Also, we performed a total acid 
number (TAN) analysis of three Kazakhstan oil fields for screening for ASP flood. 

2.1 Polymer Flood Implemented Reservoir Conditions 
 
Reservoir Depth, Temperature, and Salinity. Table 2.1 summarizes the main 

reservoir characteristics of many recent field projects. As the table shows, the 
majority of polymer flood projects are conducted in relatively shallow reservoirs 
with a depth of 1 600 m (except the Abu Dhabi case of 2 650 m). The reason is that 
shallow reservoirs have lower temperatures, which promotes polymer stability and 
favors economics as cheaper chemistry can be used. However, polymer degradation 
can be substantial at high temperatures (over 70 ℃ according to [30]). Thermal 
degradation of partially hydrolyzed polyacrylamides usually involves increased 
hydrolysis of amide groups, leading to precipitation with divalent cations (Ca2+, 
Mg2+). Incidentally, salinity and hardness often exhibit a linear relationship, which 
was obtained by analysis of several projects shown in Figure 2.1. Data were taken 
from fields such as  West Koyot, Pelican Lake, Buracica, Bohai bay, Kalamkas, and 
others. Moreover, the interactions of hydrolyzed polymers with divalent cations lead 
to the reduction of polymer hydrodynamic volume. As a result, a decrease in solution 
viscosity or even polymer precipitation occurs [40; 41]. However, the inclusion of 
copolymers/monomers such as ATBS (Acrylamide-Tertiary-Butyl Sulfonate) and/or 
NVP (N-Vinyl-Pyrrolidone) enhances the thermal stability substantially [42; 43; 44] 



20 
 

and allow polymers to be tolerant up to 120 ℃. According to the table, many 
polymer flooding projects, especially in Kazakhstan, are conducted using monomer-
modified polymers and show promising results even at high salinities [21; 45; 30; 
46; 47]. 

 

 
Figure 2.1 — Relationship of water hardness to water salinity from different polymer flood 

projects 
 

Formation Permeability. The permeability of reservoirs affects the molecular 
weight (MW) of polymers used. The weight and size of polymer molecules are 
critical since larger polymer molecules tend to plug in relatively small pore throats, 
reducing the permeability and solution concentration. This process is called 
mechanical entrapment, which negatively affects the propagation of polymer in the 
reservoir [2; 17; 48]. Theoretically, less retention is expected as permeability 
increases. Therefore, experience-supported recommendations for polymer selection 
depending on polymer weight have been made by Wang et al. [49]. The minimum 
permeability required for successful polymer flooding is in the range of 100-300 md, 
and MW should generally be not greater than 17-25 million Daltons. This statement 
is supported by Table 2.1 based on actual field applications, where the permeability 
is mostly greater than 100 md, while the average permeability is around 2 000 md. 
However, Song et al. (2022) [50] showed promising laboratory results, where 
HPAM can effectively propagate through the tight low permeable (<50 md) 
carbonate rocks. The novel polymers can extend the minimum applicability range of 
permeability, and it has high relevance for future research & development. 

Oil viscosity. Recent years in the history of polymer flooding (especially in 
Canada) have made it clear that achieving a favorable mobility ratio close to 1 or 
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less is not always the primary goal, but to reduce it as much as possible. As many 
field experiences show, injecting the same or close viscosity to live oil may be 
unnecessary. The fact that end-point relative permeability to water is usually much 
less than that to oil is often used to justify why the injected polymer viscosity can be 
less than oil viscosity. This approach has been applied to Canadian fields, where oil 
viscosity reaches 15 000 cP, and a "favorable" mobility ratio cannot even be 
achieved. Nevertheless, the experience of oilfields such as Pelican Lake, Seal, 
Mooney, East Bodo, etc. shows that polymer flooding can effectively produce more 
oil even if the oil is heavy. Many of these fields experienced an unsuccessful thermal 
injection, which becomes non-profitable in deep and/or thin reservoirs and requires 
a lot of energy [51]. Besides that, the design of the injected polymer viscosity is 
commonly based on the optimum economic output (i.e., net present value) according 
to reservoir modeling and feasibility studies. Some of these concepts are presented 
in literature sources [20; 47; 52]. 
 
Table 2.1 — Polymer flooding conditions in world projects 
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1 Marmul, Oman [53; 
54; 55] 

Field scale (Al 
Khalata) 550-675 - 46 25-30 100-2 000 4 600 90 

2 
Milne Point, 

Alaska, USA [56; 
57; 58] 

Pilot (J-Pad) 1 082 3-5.5 21.7 32 500-5 000 27 500 300 

3 Captain (offshore), 
UK [59; 60; 61] Pilot (SUCS) 914 <36.6 30.5 31 5 000 N/A 80 

4 
Dalia/Camelia 

(offshore), Angola 
[62; 63] 

Pilot (DAL-710, 713, 
729) 

800-1 
000 6-10 45-

56 - >1 000 117 700 1-11 

5 Daqing, China [20; 
64] Field scale 1 000 6.1 45 25 1 100 3 000- 

7 000 9 

6 Shengli, China [65] Field scale 1 230 7.9-30.5 71 33.5 1 800 3 900 50-150 

7 Shuanghe, China 
[66] Pilot (Dong-Gudao) 1 460 25.2 72 20 422 4 356 7.8 

8 Bohai bay, China 
[67] Pilot (Layer II) 1 300- 

1 600 15-25 65 31 2 000 9 374 24-452 

9 Tambaredjo, 
Suriname [68] Pilot (Block-X) 375-425 13.7 36 33 3 000- 

10 000 10 000 300-1 
100 

10 
East-

Messoyakhskoe, 
Russia [69] 

Pilot (T1-sand) 800 15-50 16 28-30 50-5 000 N/A 111 

11 Matzen, Austria 
[70; 71; 72] Pilot (PK1-3) 1150 20 50 20-30 500 25 000 19 

12 Carmopolis, Brazil 
[73; 74] Pilot (8 TH) 700 50 50 12-22 100 20 000 70-120 

13 Canto do Amaro, 
Brazil [73; 74] Pilot 500 8 55 22 204 500 7 

14 Buracica, Brazil 
[73; 74] Pilot (Pilot-1) 305 20-40 60 20 150-400 33 000 11 

15 Diadema, Argentina 
[75; 76] Pilot (Pilot-1) 900 4-12 50 30 500 16 000 100 

16 El Corcobo, 
Argentina [77; 78] Pilot 650 0.5-18 38 27-33 500-4 000 46 000 160-300 

17 Bockstedt, 
Germany [79] Pilot 1 200 15 54 24-30 2 000 186 000 11-29 

18 East Bodo, Canada 
[9] Pilot 794 3.2 27 30 1 000 25 000-

29 000 
600-2 
000 
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19 Mooney, Canada 
[80; 81] Pilot (11-14 pattern) 875-925 3-5 29 26 1 500 N/A 300-600 

20 Seal, Canada [10; 
81] Pilot 600-650 8.5 20 27-33 3 000-5 

800 N/A 3 000- 
7 000 

21 Caen, Canada [10; 
82] Pilot 930 2.9 21 26.5 500-2 000 13 509 69.5-99 

22 Wainwright, 
Canada [83] Pilot (Suffield area) 650 - - 30 300 72 000 100-200 

23 Pelican Lake, 
Canada [11;84] Pilot (B pool) 300-450 1-9 12-

17 28-32 300-5 000 N/A 1 650- 
15 000 

24 Mangala, India [85; 
86; 87] Pilot (NE-5) 600 24-40 <62 21-28 5 000 7 140 9-22 

25 Abu Dhabi [88] Single well injection 
test 2 650 20 >93 20-30 10-1 000 >200 

000 1 

26 Nuraly Pilot 1 550 10 81 19 368 57 000 0,91 

27 East-Moldabek, 
Kazakhstan [45] Pilot scale 250 10 25 35 1 500 140 000 400 

28 Zaburunje, 
Kazakhstan [45] Pilot (FM1) 875 10 38 30 230-1 000 145 000 20 

29 
Kalamkas, 

Kazakhstan [21; 46; 
47] 

Industrial pilot scale 746 10-20 39 28 946 136 211 16 

Note: all 29 fields are sandstone reservoirs except the Abu Dhabi (carbonate-limestone) oil field 
 

Figure 2.2 shows a radar diagram of the major screening parameters for polymer 
flooding, showing the polymer flooding applicablity range. Wide ranges are 
associated with most parameters, and the ranges have been expanded due to the 
growth in the understanding of the technology and its refinement during the past 60 
years. However, temperature and depth of formation remain the weakest side of 
polymer flooding. Even if new monomer-modified co- and terpolymers are showing 
promising laboratory results [42; 43; 89; 90; 91], there are no real field 
implementations where the formation temperature is greater than 109 ℃ [92]. 
Nevertheless, the radar chart provides an excellent visual representation of 
observations made previously in this work. 
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Figure 2.2 — Main screening parameters for polymer flood according Table 2.1 

 

2.2 Polymers and Injection Parameters 
 
Polymers used in EOR. Table 2.2 summarizes the main injection parameters 

during the polymer flooding. According to many authors [2; 16; 17; 28; 93], there 
are two main types of polymers in terms of their origin: synthetic polymers or 
polyacrylamides (PAM) used in paper production, and biopolymers used in the food 
industry as a thickener. In early polymer flood applications, polyacrylamides were 
used much more frequently than biopolymers due to their efficient manufacturing 
environment and commercial availability. This tendency continues these days 
because over 95% of polymer floods are based on polyacrylamides. Also, it is 
essential to highlight that polyacrylamide is mainly used in its partially hydrolyzed 
or anionic form (HPAM). Since anionic PAM (or HPAM) provide high viscosifying 
power and less retention on anionicly charged clays. In contrast, cationic PAM is 
too shear sensitive and has lower Mw. Non-ionic PAM is adsorbing on the rock 
surface too much [94]. 

The main representative of biopolymers is xanthan gum (derivation of micro-
organism Xanthomonas campestris) [95; 96], which is characterized by semi-rigid 
molecules, whereas the structure of polyacrylamide molecules is flexible long chains 
[97]. Understanding the structure of molecules and microscale studies reveals each 
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polymer type's key features. Thus, the primary polymer parameters such as stability 
to temperature, high water salinity, mechanical degradation, biodegradation, 
dissolvability, viscosifying characteristics, adsorption to the rock surface, etc. are 
noted. 

There are many laboratory and simulation studies [98; 99; 100; 101] that confirm 
HPAM benefits in viscosifying characteristics, absence of biodegradation, and 
injectivity over biopolymers. Alagic et al. [100] state that biopolymers are often 
sensitive to biodegradation, and it is important to protect them against potential 
microbial degradation. On the other hand, Al-Murayri et al. [102] indicated that 
biopolymers are more stable in the presence of oxygen and H2S in any concentration, 
while high concentrations limit stability for HPAM. Seright and Skjevrak [32] 
suggest that HPAM degradation can be mitigated by keeping dissolved oxygen at an 
undetectable or acceptable level (as close to zero as practical). For this reason, 
modern polymer injection units provide nitrogen blanketing in the polymer 
preparation system to prevent air contact with the solution [30]. Specialized 
equipment for HPAM solutions was also mentioned in many works [56; 63; 103]. 
For example, Abbas et al. [103] argue that specialized equipment is essential in the 
field conditions to overcome problems with dissolving HPAMs (e.g. fish-eyes and 
gels). In contrast, such dissolution problems are not observed for 
hydroxyethylcellulose (HEC) biopolymers. Seright et al. [104] confirmed that 
xanthan solution is more resistant to mechanical degradation showing pseudoplastic 
behaviour during coreflooding experiments. In addition, synthetic HPAMs lack 
thermal and brine hardness stability, as will be discussed below. But, the main 
conclusion for the polymer's limitations is made by Ryles [30], who observed that 
the main challenge lies with high temperature rather than high salinity. Despite these 
disadvantages, HPAM is still the most widely used polymer in the world. An internet 
search suggests that ~1.2x10^6 tones of HPAM/PAM are produced each year, 
whereas only ~1.2x10^4 tons of xanthan are produced. Thus, HPAM production 
(and availability) is roughly 100 times greater than xanthan (the most extensively 
produced biopolymer). The price of xanthan (per weight) is 3-6 times greater than 
that of HPAM. This information is from a combination of internet and confidential 
sources. Also, biopolymers oil field application is associated with the problems of 
high purity, active content, and neediness of using biocides [94]. 

A major factor that aids the application of polymer flooding is the the current price 
for large HPAM purchases (~$2-2.5/kg) is actually less than that in 1980 (~$4-5/kg). 
This fact is remarkable because the Consumer Price Index in the USA (the average 
cost of goods and services) has more than tripled since 1980. Much of the credit for 
keeping HPAM prices must go to the HPAM manufacturers. However, some credit 
must also be given to several large-scale polymer floods (Daqing, Mangala, Pelican 
Lake) that played a significant role in providing the market and promoting low-cost 
polymers. Interestingly, the primary justification (used by big oil companies) for 
eliminating EOR in 1986 was that the “cost of chemicals would always rise in direct 
proportion to the price of oil.” The reality of HPAM price history emphasizes that 
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technical and economic advances can upend conventional wisdom at a particular 
time. 

Polymer Injection Design. A literature review reveals that polymer 
concentrations were in a wide range of 300 – 2 750 ppm and, on average, was 1 570 
ppm, as shown in Figure 2.3. Furthermore, the viscosity range was 3-300 cp and in 
average was 41 cp. Only a minority of field projects used polymer viscosity higher 
than 40 cp. On the other hand, some projects used relatively low polymer 
concentrations and achieved considerable viscosity–because low-salinity (or fresh) 
water was used [105; 106; 107] (#26 line in Table 2.2). The selection of the process 
water source has crucial importance and should satisfy the following concepts: 1) 
compatibility with reservoir rock & fluids (no clay swelling/migration should occur; 
2) low cost and existing infrastructure; 3) high potential production capacity; 4) 
salinity (especially divalent cations) as lower as practical; 5) chemical stability; 6) 
dissolved iron, oxygen, TDS, oil contents as low as possible (absence is an ideal 
case); 7) if dissolved iron exists in the process water dissolved oxygen level should 
be controlled as low as possible (at a maximum <200 ppb based on [32] and <46 ppb 
based [108]).  

Polymer Injectivity. Injectivity issues are important and of high current interest 
in polymer flooding technology. Besides creating a high-pressure displacement front 
in-situ, providing a sufficient injection rate is also essential. Moreover, in 
unfractured vertical injection wells, simple Darcy-law calculations reveal that 
polymer injectivity relative to water should be reduced by at least 80% [85]. In 
contrast, most field projects summarized in Table 2.2 reported relatively high 
polymer injectivity. Furthermore, the Kalamkas field case [30] demonstrated that 
polymer injectivity was roughly 4 times greater than water injectivity. Previous work 
has shown that the viscoelastic (or shear-thickening) behavior of HPAM polymers 
occurs at high fluxes, and as a consequence induces a fracture to form and extend in 
the well [109]. The presence of fractures during the polymer flood is consistent with 
the fact that most of the worldwide polymer flood projects inject into vertical wells 
above the formation parting pressure [52; 104; 106; 110; 111; 112]. In contrast, if 
fractures or fracture-like features are not present during polymer injection, achieving 
a favorable economical injection rate and acceptable voidage replacement ratio (e.g., 
the same as during a waterflood) are not practical. Also, Sagyndikov et al. [46] 
demonstrated that these induced fractures reduce polymer mechanical degradation 
to a level that mitigates this degradation concern in a field setting. 

Thomas et al. [113] have investigated injectivity prediction difficulties by 
reviewing some polymer field projects. The authors conclude that improving 
injectivity prediction is needed as pessimistic predictions are often obtained and can 
lead to the evaluation of polymer volumes that can be injected. The paper suggests 
further investigations using simulation processes, especially in reconsidering 
reservoir properties such as near-wellbore fractures and modeling polymer rheology 
and its features. Table 2.2 represents a modified summary of the polymer projects 
injectivity data presented by Thomas et al. [113]. 
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Table 2.2 — Polymer formulation and injectivity of PF projects 

# Field Polymer 
type 

Mw, 
million 

Da 

Polymer 
concentration, 

ppm 

Polymer 
viscosity, 

cP 

Porcess 
water 

salinity, 
ppm 

Injectio
n rate, 
m3/d 

Injectivity 
issues 

1 Marmul, Oman HPAM 18-20 - 15 4 500 250-
750* No (fractures) 

2 Milne Point, 
Alaska, USA HPAM N/A 1 600-1 800 45 2 500 350 and 

95* 

Initially no 
(decreased after 

7 months) 

3 Captain 
(offshore), UK HPAM 18 ~2 000 20 - 

4 710 
then  

2 041* 
No 

4 
Dalia/Camelia 

(offshore), 
Angola 

HPAM 12-16 900 2.9 25 000- 
52 000 2 385* No 

5 Daqing, China HPAM N/A 2 000-2 500 40-300 700 0.14-0.2 
PV/yr** 

Mostly no 
(hydraulic 
fracturing 
applied if 
needed) 

6 Shengli, China HPAM 17 2 000 25-35 3 900 - - 

7 Shuanghe, China 
HPAM 

(S625+S
525) 

N/A 1 090 93 at 3 
rpm 

fresh 
water - - 

8 Bohai bay, 
China 

Associat
ive 

polymer 
20 1 750 77.6-131 - - - 

9 Tambaredjo, 
Suriname 

HPAM 
Flopaam 
3630S 

N/A <2 500 45 then 
125 500 150-

450* No (fractures) 

10 
East-

Messoyakhskoe, 
Russia 

HPAM 20 1 830 

30 at 7.34 
s-1 

60 at res. 
cond. 

- 150-
300* No 

11 Matzen, Austria 
HPAM 

Flopaam 
3630S 

5-10 800 1.6-4.6 at 
res. cond. 23 000 400* No (fractures) 

12 Carmopolis, 
Brazil HPAM 5-10 1 000 30 500 165* No 

13 Canto do Amaro, 
Brazil HPAM 5-10 750 10 - 200-

300** No 

14 Buracica, Brazil HPAM 20 500 40 100 60-
120** No 

15 Diadema, 
Argentina 

HPAM 
Flopaam 
3630S 

N/A 1 500-3 000 70 16 000 1 000** No 

16 El Corcobo, 
Argentina HPAM N/A 500 20-25 1 044 1 000** No 

17 Bockstedt, 
Germany 

Biopoly
mer 

Schizop
hyllan 

18-20 300 25 - 135** 
No (after 

reperforation 
and acidizing) 

18 East Bodo, 
Canada HPAM 20-25 1 500 50-60 - 200* No (horizontal 

wells) 

19 Mooney, Canada HPAM 20 1 500 20-30 - - No (horizontal 
wells) 

20 Seal, Canada 
HPAM 

Flopaam 
3630S 

20 1 000-1 500 25-45 2 500-11 
000 - No (horizontal 

wells) 

21 Caen, Canada 
HPAM 

Flopaam 
3630S 

N/A 1 300 32 15 287 800* No 

22 Wainwright, 
Canada HPAM 20 2 100-3 000 25 72 000 - 

No (after 
installing 

booster pumps) 
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# Field Polymer 
type 

Mw, 
million 

Da 

Polymer 
concentration, 

ppm 

Polymer 
viscosity, 

cP 

Porcess 
water 

salinity, 
ppm 

Injectio
n rate, 
m3/d 

Injectivity 
issues 

23 
Pelican Lake, 

Canada 
(2006-...) 

HPAM 
Flopaam 
3630S 

20 600-3 000 13-25 - - No 

24 Mangala, India 
(2014-…) 

HPAM 
Flopaam 
3630S 

18-20 2 500-3 000 15-20 5 400 ~740* No 

25 Abu Dhabi HPAM 
(ATBS) N/A 500-2 400 1.2-5.5 >200 

000 144* No 

26 Nuraly (2014-
2019) 

HPAM 
Flopaam 

5115 
VHM 

AL-777 

14 500 6 1 300 80-220* No 

27 
East-Moldabek, 

Kazakhstan 
(2019-…) 

HPAM 
Flopaam 
1630S 

N/A 2 400 23 140 000 50* No 

28 
Zaburunje, 
Kazakhstan 
(2014-…) 

HPAM N/A 1 950 15 135 000 740** No 

29 
Kalamkas, 
Kazakhstan 
(2014-…) 

HPAM 
R-1 and 
Superpu

sher 
K129 

14 2 000 24 98 722- 
108 914 300* No (fractures) 

30 West Salym 
[114] 

HPAM 
FLOPA

AM 
3230 

8 2 500 14 

soft 
water 
(Ca2+, 
Mg2+ 
<1.6 
ppm) 

150* No (fractures) 

* - injection rate for 1 well; ** - full field injection rate 
 

Volokitin et al. (2018) [114] during West Salym ASP project concluded that 
injection below fracture pressure could not be achieved a reasonable rates. Thus, 
decided to inject under fracturing conditions. Fracture initiated by the temperature 
reduction and ramping up the injection rate (thermo-elastic stress reduction). The 
fracture length (determined by well tests analysis) have remained small compared to 
the well spacing and therefore not expected to harm sweep efficiency. Also, this 
work showed practical approach to monitor fracture propagation by combination of 
temperature logs and presurre fall-off tests, which can be utilized at the Kalamkas 
PF project.  
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Figure 2.3 — Polymer injection parameters for polymer flood according Table 2.2 

 
Polymer viscosity and slug design. Determining the desired viscosity of the 

polymer solution is a key objective of designing the polymer flooding project since 
it strictly affects project feasibility. A simple method to estimate desired viscosity 
has been developed by Sorbie and Seright [115]. As the authors say, the base-case 
method helps determine the target polymer viscosity by simply multiplying 
waterflood end-point mobility ratio times the permeability contrast (highest 
permeability divided by the lowest permeability. Thus, the measurement of water 
and oil relative permeabilities is key for the polymer flood design. 

Table 2.3 summarizes the main reservoir development parameters (mobility ratio 
& permeability contrast) in the comparison of PF design (viscosity, slug size), 
implemented conditions (number of injectors & producer, watercut) and an achieved 
result (incremental recovery factor - RF).  

As the polymer solution is a shear-thinning (non-Newtonian) agent, it is strongly 
recommended to consider its apparent viscosity (dependent on the shear rate). 
Typically, polymer viscosities are evaluated at a shear rate of 7,34 s-1, which has 
been accepted as the industry standard (corresponds to 6 rpm of UL adapter on 
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Brookfield viscosimeter). In fact, typical shear rates in reservoir conditions (deep 
from well perforations) can be lower (depending on permeability, well spacing, and 
injection rate, so the apparent viscosity could be higher. In addition, reservoir 
temperature should be considered while measuring the polymer solution viscosity 
since the higher the temperature, the lower the viscosity is expected. 

Sheng [116] and Seright [52] show that over the 60-year history of polymer 
flooding (PF), the concentration and volume of polymer injection have increased 
over time. Whereas the slug volume in the 1960-1980 period was around 5-17% of 
the pore volume, in the last 20 years the volume has reached 120% (Daqing field, 
PRC). The increase in volume is due to the absence of a residual resistance factor 
effect, i.e., the absence of a post-effect when polymer wells are converted to water 
injection. Testing on physical reservoir models has shown that the viscous fingering 
of the polymer bank has occurred in the high permeable zone, thereby not involving 
the low-permeable zone. This phenomenon has been clearly demonstrated by a field 
example from the Kalamkas field [47]. 

Horizontal wells for polymer flooding. Up to the mid 1990s, before the 
widespread use of horizontal wells, accepted screening criteria [117] advocated that 
150 cp was the upper limit of oil viscosity for polymer flooding applicability. The 
introduction of horizontal wells has allowed polymer flood applications with much 
higher oil viscosities [11; 52; 106; 31]. In particular, horizontal wells considerably 
increase injectivity, reservoir acess, and sweep  efficiency, relative to vertical wells.  
 
Table 2.3 — Reservoir development parameters accepted for polymer flooding projects 

# Field 
End 

Mobility 
Ratio 

Perm. 
Contrast 

Polymer 
viscosity, 

cP 

Injected 
Volume, 

PV 
I/P* 

Water 
Cut 

before 
PF, % 

Incremental 
RF, % 

1 Marmul, Oman 
(2010-…) ~40 10:1 15 - 27/- ~90 ~10 

expected 

2 
Milne Point, Alaska, 

USA 
(2018-…) 

>20 10:1 45 - 2/2 
(horizontal) ~65 ~10 

expected 

3 Captain (offshore), UK 
(2011-2013) 31 - 20 - 1/1 

(horizontal) 85 ~16 

4 
Dalia/Camelia 

(offshore), Angola 
(2010-…) 

- 10:1 2.9 0.5 
expected 

3/- 
(deviated) >40 3-7 expected 

5 Daqing, China 
(2008-…) 9,4 4:1 40-300 0.4-1.2 - 95 15-18 

6 Shengli, China 
(2008-2013) - - 25-35 >0.4 55/84 95 3.7 

7 Shuanghe, China 
(1994-1999) - 4:1 93 at 3 rpm 0.4 - 91 10.4 

8 Bohai bay, China 
(2005-…) - 4:1 77.6-131 0.31 10/35 >80 7.1 

9 Tambaredjo, Suriname 
(2008-2015) - 12:1 45 then 125 0.65 3/9 80 11 

10 
East-Messoyakhskoe, 

Russia 
(2017-2019) 

30 - 

30 at 7.34 
s-1 

80 at res. 
cond. 

0.1 2/4 
(horizontal) >90 - 

11 Matzen, Austria 
(2011-...) - - 1.6-4.6 at 

res. cond. - 2/6 ~90 ~10 
expected 

12 Carmopolis, Brazil 
(1997-2003) 12 - 30 0.1 4/21 10 - 
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# Field 
End 

Mobility 
Ratio 

Perm. 
Contrast 

Polymer 
viscosity, 

cP 

Injected 
Volume, 

PV 
I/P* 

Water 
Cut 

before 
PF, % 

Incremental 
RF, % 

13 
Canto do Amaro, 

Brazil 
(2001-2008) 

2-5 - 10 0.16 2/6 6 - 

14 Buracica, Brazil 
(1999-2003) 3 - 40 0.73 2/7 8 - 

15 Diadema, Argentina 
(2007-...) 80 9:1 70 0.8 5/19 96 6-8 expected 

16 El Corcobo, Argentina 
(2012-…) - - 20-25 - 6/22 ~85 6-10 

expected 

17 Bockstedt, Germany 
(2013-…) - 3:1 25 - -/4 >90 - 

18 East Bodo, Canada 
(2006-…) 42 - 50-60 - 1/12 95 20 expected 

19 Mooney, Canada 
(2008-2010) - - 20-30 - 2/3 

(horizontal) 90 18 

20 Seal, Canada 
(2010-…) - - 25-45 - 3/4 

(horizontal) ~18 8.8 

21 Caen, Canada 
(2010-…) 44-64 4:1 32 0.6 2/10 

(horizontal) 96 7-12 
expected 

22 Wainwright, Canada 
(2009-…) - - 25 0.5 13/24 - - 

23 Pelican Lake, Canada 
(2006-...) 165 4:1 13-25 - - 90 25 expected 

24 Mangala, India 
(2014-…) 28 10:1 15-20 ~0.7 86/- 77 23 

25 Abu Dhabi (2021-
2022) 1.8 10:1 5.5 N/A 1/- N/A N/A 

26 Nuraly (2014-2019) 0.7 30 6 0,153 4/22 81  

27 
East-Moldabek, 

Kazakhstan 
(2019-…) 

- - 30 0.035 2/17 ~85 5.7-7.7 

28 Zaburunje, Kazakhstan 
(2014-…) - - 19 0.17 4/63 ~90 2.3 

29 Kalamkas, Kazakhstan 
(2014-…) 7 4:1 24 0.075 2/23 ~90 9 (expected) 

 

2.3 Chemical (ASP) flood risks and feasibility assessment 
 
The alkali/surfactant/polymer injection was first invented in 1983 by Krumrin and 

Falcone in the laboratory to achieve the synergetic effect of the chemicals. After 10 
years, in 1993, the first field-scale implementation was conducted in the West Kiehl 
Field, Wyoming, USA, reported by Clark et al. [118]. The pilot test was successful, 
leading to the production of 26% of original oil in place (OOIP) in 2.5 years. Later, 
other countries such as Canada, India, and Russia implemented field pilot tests. 
Finally, the largest field-scale implementations were started in China in 2014. 
According to Wang et al. [119], the widespread use of polymers in Chinese fields 
provided solid foundations for ASP flooding. This point of view was also supported 
by laboratory experiments conducted by Aitkulov et al. [120], which indicated more 
enhanced oil recovery of ASP after polymer flooding rather than after waterflooding. 

The synergetic effect of ASP flooding is based on mechanisms induced by each 
of three chemicals: polymers, which create a stable piston-like displacement front; 
surfactants, which decrease interfacial tension (IFT) between oil and water; and 
alkalis, which mitigate surfactant adsorption and create in-situ soaps to decrease IFT. 
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These three mechanisms improve the ability of the oil to flow in porous media 
involving untouched zones of reservoir. 

To better understand the effect of ASP on oil production growth, especially the 
mechanism underlying the surfactant-oil interaction, it is necessary to examine the 
main studies on microemulsion types [121; 122]. There are three types of 
microemulsions formed when oil and surfactant come into contact in the reservoir, 
based on Windor's [104] terminology. Thus, Type II (-), Type III, and Type II (+) 
have been detected depending on brine salinity level. These Windsor types can be 
well described by ternary diagrams. Type II (-) means a two-phase environment at 
low salinities where only water and oil are presented. Then, it moves to the Type III 
microemulsion at medium salinity where three phases exist in equilibrium: water, 
oil, and microemulsion (middle phase). Type III is the transitional stage from Type 
II (-) to Type II (+) or vice versa, where Type II (+) also has two phases, but at high 
salinity: water and microemulsion. Type II (-) and Type II (+) can coexist in the 
Type III environment since Nelson and Pope [122] did not observe type-to-type 
behaviour in EOR processes. In general, Type III is the most favorable condition for 
effective oil displacement in porous media since the pure oil phase and lowest IFT 
are achieved. Based on this theory and these processes, the evaluation of ASP 
formulation (phase behaviour tests) is conducted to reach successful ASP flooding 
projects. If the formulation fits reservoir conditions, over 20% of incremental oil 
recovery can be accomplished, which is almost two times greater than polymer 
flooding. 

Although ASP flooding seems promising in the laboratory as a tertiary recovery 
method, field experience has revealed several complicating features of the 
technology. One of the main problems is a chemical cost, i.e., the surfactant is 
roughly 2 times more expensive than polymer (Table 2.4), and the consumption is 5 
times more, resulting in a factor of 10 for cost. Another ASP flooding major problem 
is related to operational arrays [12; 13; 14; 15]. The scaling problem is the most 
common among ASP flood projects, and it creates the need to redesign surface 
facilities from ASP solution preparation units to production and processing units. 
Experience in China has shown that frequent pump failures have greatly shortened 
pump-checking time to tens of days [124]. Figure 2.4 represents some pictures of 
scaling accumulated on stators of progressing-cavity pumps (PCP) in the Daqing 
oilfield. ASP flooding in the Mangala field led to the impairment of the artificial 
lifting system. As a result, jet pumps were accepted as suitable instead electrical 
submersible pumps (ESP) [125]. The simple explanation for scale formation in the 
tubes is the significantly high pH level of the injected water, caused by the large 
amounts of alkali added [126]. Apart from reconsidering the artificial lift systems, it 
is also required to implement chemical techniques such as scale inhibitors and 
chemical-feeding systems [15], which certainly increases project operational costs. 
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Figure 2.4 — Scaling PCP rotors in Daqing ASP flooding area [105] 

 
Another complicating feature during production can be viscous hard-to-break 

emulsions, as was observed in several pilots in China. Guo et al. [15] reported that 
the maximum emulsion viscosity of the produced fluid reached 487 cp during strong 
alkali injection (NaOH). Some cases show great emulsion viscosities which are 10 
times greater than injected ASP solution. The authors acknowledge that the 
phenomenon is not well understood, but the presence of emulsions and their 
problems remain a fact. The main associated problem is the loss of production. 
Therefore, potential emulsification issues should be envisaged preliminary as it was 
done in the Bhagyam field having additional demulsifier injection wells near 
producers [12]. Also, Finol et al. [13] have reported preliminary laboratory 
experiments on identifying cost-effective demulsifiers in the designing stage of the 
Al Khalata pilot test. 

Feasibility study on ASP flooding projects. According to Dean et al. [127], the 
development of ASP formulations and their implementation in the field/pilot units 
has two main objectives: 1) academic applications aiming at a better understanding 
of the mechanism, and 2) practical applications pursuing economic benefits through 
the production of incremental oil. Based on a number of publications that are 
describing any ASP technology implementation at a pilot scale, it is observed that 
the authors refrain from providing the economic performance of any given project. 
This is the main reason for the difficulty in determining the real purpose of ASP 
projects. Moreover, some projects were evaluated without considering capital and/or 
operating expenditures, i.e. only the benefit from incremental oil was estimated, and 
the proj’ct's profitability was not adequately assessed. Such cases can misrepresent 
the understanding of the economic feasibility of ASP flooding, which is critical due 
to its complexity and use of expensive chemicals. 

This section focuses on the economic evaluation of ASP flooding projects 
conducted on Daqing (China) and Mangala (India) oilfields. It is worth noting that 
the economics of the projects have been evaluated based only on the data presented 
in the scientific articles of Gao et al. [128] and Pandey et al. [125]. Both projects 
were successful, providing additive oil recovery. Nevertheless, the economics 
behind them were not properly assessed. Therefore, the main question to answer is: 
does the extra oil produced by ASP flooding pay for itself? 

Gao et al. [128] presented an ASP flooding project, which involved 16 injection 
and 25 production wells. Injection of the main ASP slug started in 2014 and by 2019 
the accumulated oil increment was 0.647 million barrels which refers to 7.89% of 
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the incremental recovery. Considering the size of the pilot area and the number of 
wells involved, the complications of water treatment and production that are 
common in ASP projects, it can be assumed that the project does not achieve 
economic benefit. In evidence, the simplified feasibility study considering only the 
costs of chemicals as the main part of operational expenditures is presented in this 
section. The consumption of chemicals has been pre-compiled based on the given 
injected pore volumes and the slug formulations, and chemical prices have been 
taken as industry average prices. Thus, the following assumptions over prices were 
accepted (Table 2.4): 
 
Table 2.4 — Chemical prices according to industry averages 

Chemicals USD/kg 
Alkaline 0.65 

Surfactant 7 
Polymer 3.5 

 
ASP project was held on the N3D block with an area of 0.49 km2 and a pore 

volume of 1 798 200 m3, which is located on the East side of the Daqing oilfield. 
According to Guo et al. [15], the chemical formulations of ASP floods in China were 
analyzed. The authors presented data on 27 ASP flooding projects with slug 
concentrations. From the data, the average concentrations of each slug were 
identified and fitted to the injection volumes of the N3D block (Table 2.5). 
Combining all this available information and correct calculations makes it easy for 
us to imagine the costs of this project. It is estimated that around $41 million was 
spent on chemicals only to provide such slug volumes (Table 2.6). The author states 
that the economic benefit of performed ASP project is $32.35 million (calculated at 
$50/bbl), which is about $10 million more than the chemical cost. It is important to 
note that apart from the cost of chemicals, nothing else has been taken into account, 
i.e. the actual cost of the project could be times higher with capital and other 
operating costs caused by different challenges. 

 
Table 2.5 — Assumed design of Daqing ASP flooding [15; 128] 

1st year 2nd -4th  years 5th year 6th year  

Pre-Slug (polymer) ASP Main Slug ASP Vice Slug Post-Slug 
(polymer) 

Total 
injected 

PV Concentrat
ion, % PV Concentration, % PV Concentration, % PV Concentrati

on, % PV 

0,2 0.14 0.505 0.3%S+1%A+0.18%P 0.21 0.1%S+1.2%A+0.16%P 0.18 0.12 1.0924 
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Table 2.6 — Cost of chemicals used in Daqing ASP pilot 
Slug consequence Chemicals Injected weight, 

tonnes 
Cost for 

chemicals, USD 
Cost for chemicals over the pilot 

period, USD 

Pre-Slug (polymer) 
A 0 0 

1 762 236 S 0 0 
P 503.50 1 762 236 

ASP Main Slug 
A 9 080.91 5 902 592 

30 693 476 S 2 724.27 19 069 911 
P 1 634.56 5 720 973 

ASP Vice Slug 
A 4 479.68 2 911 789 

7 615 449 S 373.31 2 613 144 
P 597.29 2 090 515 

Post-Slug (polymer) 
A 0 0 

1 357 929 S 0 0 
P 387.98 1 357 929 

Total 41 429 089 
 

A similar approach was applied to evaluate an Indian ASP experience performed 
in the Mangala oilfield in 2014 [125]. The critical reason for evaluating its economic 
efficiency is the involved well locations. According to the authors, the ASP pilot 
project was carried out on a 5-spot pattern block with 4 injection wells and 1 
production well, and an area of 10 000 m2. The main reason to investigate this case 
is the well locations that lead to injected volume loss 3/4. It suggests that the crucial 
part of injected volume abandons outside of the well grid. Therefore, the economic 
effect is questionable, as the cost of chemicals for effective sweeping increases by a 
factor of 4. 

As reported by Pandey et al. [129] at the design stage of the ASP pilot, the 
thickness of the pilot formation is 70 m with a net-to-gross of 40%. Considering the 
area of 10 000 m2 and average porosity, the volume of pores is 70 000 m3. Later, 
after a technically successful pilot, the slug formulations were presented in 2016 
(Table 2.7). Table 2.8 presents chemical cost estimation for each stage of ASP 
flooding at Mangala. Since the incremental oil reached 23 000 bbl, which the authors 
describe, the project will not be appropriate for returning investments spent even if 
the oil cost is 90 $/bbl. It should be noted that there was polymer flooding at the 
same pilot area for 3 years before the ASP flooding. The polymer slugs were graded, 
and the pilot performed well generating incremental oil, referring to 10-15% of 
STOIIP compared to waterflood [85]. Despite this fact, ASP flooding was 
technically justified, giving extra-incremental oil from the pilot area, but proved to 
be uneconomical. 
 
Table 2.7 — Chemical slug compositions prepared in Mangala ASP pilot [125] 

ASP Main Slug Polymer Drive-1 Polymer Drive-2 Chase Water Drive 

PV Concentration, % PV Concentration, % PV Concentration, % PV Concentration, % 

0.5 0.3%S+3%A+0.25%P 0.3 1.5%A+0.23%P 0.2 1%A+0.2%P 0.1 1%A 
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Table 2.8 — Cost of chemicals used in Mangala ASP pilot 
Slug 

consequence Chemicals Injected weight, tons Cost for chemicals, USD 
Cost for chemicals 

over the pilot 
period, USD 

ASP Main 
Slug 

A 1 050 682 500 
1 638 000 S 105 735 000 

P 63 220 500 

Polymer 
Drive-1 

A 315 204 750 
373 800 S 0 0 

P 48.3 169 050 

Polymer 
Drive-2 

A 140 91 000 
189 000 S 0 0 

P 28 98 000 

Chase Water 
Drive 

A 70 45 500 
45 500 S 0 0 

P 0 0 
Total 2 246 300 

 
ASP applicability studies on Kazakhstani fields. The previous section 

described the economic issues attributed to ASP flooding. Apart from this, the other 
critical property oil total acid number (TAN) for ASP applicability was studied. The 
high acidic constituents react with alkaline solutions to create in-situ surfactants 
[17]. Surfactants, for their part, obtain ultralow interfacial tension (IFT) between 
displacing agent and crude oil. Thus, several mechanisms are in place to enhance oil 
recovery. In the case of low TAN, alkalines may mitigate surfactant retention, which 
improves chemical consumption volumes. 

In this regard, the TAN analysis of several Kazakhstan oilfields was carried out. 
The TAN analysis of the Mangistau (West Kazakhstan) oilfields, combined with 
actual ASP feasibility studies from other companies, argues that ASP is not a 
promising cEOR method for extending the life of brownfields (Table 2.9). 
According to Guo et al. [15], in 1987 the threshold value of the acid number for the 
effective reaction was considered 0.20 mg KOH/g, but then this number was reduced 
by several times, which can be noted in Table 2.9. Nevertheless, underestimating the 
importance of oil TAN, using highly reactive surfactants, is too risky because of 
production issues, such as scaling and hard-to-break emulsions. These problems, 
coupled with the expensive surfactant cost, only complicate and worsen the 
economics of projects. 
 
Table 2.9 — TAN analysis of Mangistau oilfields in comparison with worldwide ASP projects 

Oilfields Oil TAN,  
mg KOH/g 

ASP flood 
conducted 

Incremental 
RF, % Complications 

Bhagyam, India [12] 2,00 Yes 20 Emulsion, scaling, 
corrosion 

Al Khalata, Oman [13] 0,78 Yes - Emulsion, scaling 
Karazhanbas, Kazakhstan 0,251 No - - 

Kalamkas, Kazakhstan 0,132 No - - 
Uzen, Kazakhstan 0,048 No - - 

West Salym, Russia [14] 0,040 Yes 16 Scaling 

Daqing, China [15] 0,020 Yes >20 
Emulsion, scaling, 

repairment of surface 
equipment 
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2.4 Chapter Conclusions 
 
The goal of this chapter was to review important aspects and performances during 

polymer flooding. These aspects include reservoir conditions for effective 
implementation, polymer injection, and reservoir development parameters. The 
growing large-scale application polymer flooding demonstrates that it is the most 
feasible chemical EOR technology. In contrast, ASP/SP flood is not profitable and 
causes severe on-site problems. The primary novel finding from this review and 
analysis of field projects is to cast doubt on the economic feasibility of ASP 
flooding—especially in Kazakhstan. This work also provides a perspective on the 
TAN (total acid number) for Kazakhstan oilfields, especially for applicability to ASP 
flooding. Many insights into applicability of polymer flooding were also noted. In 
particular, the fact that HPAM prices are actually lower now than they were 40 years 
ago has greatly aided the ability for polymer flooding to be applied on a large scale 
today. The development of horizontal wells has greatly enhanced polymer injectivity 
and allowed the upper limit of oil viscosity for polymer flooding to be increased 
from ~150 cp to over 3000 cp. Controlled injection above the formation parting 
pressure has also played a major role in this regard. Until recently, commercially 
available EOR polymers were not sufficiently stable in reservoirs with temperatures 
exceeding ~70°C. However, the recent availabity of an ATBS polymer has the 
potential to allow feasible polymer flooding in reservoirs at temperatures up to 
120°C. A major difference from waterflooding is that the dissolved oxygen level as 
close to zero as practical—certainly less than 200 parts per billion. Above 60°C, 
dissolved oxygen levels must be much closer to zero. In theory, polymer flooding 
can be applied in formations with any water salinity. However, practical 
considerations favor using the least saline water that is available. Field experience, 
as well as laboratory and theory, consistently reveal that the polymer bank size 
should be as large as practical (typically ~1 pore volume). Once injection is switched 
from polymer back to water injection, water cuts will quickly rise to high values. 
The vast majority of polymer floods have been applied in moderate-to-high 
permeabilty reservoirs (>100 md). This fact is due first to the need for high polymer 
injectivity and second because high-Mw polymers exhibit difficult in penetrating 
into less-permeability rock. However, Song et al. (2022) [50] showed promising 
laboratory results, where HPAM can effectively propagate through the tight low 
permeable (<50 md) carbonate rocks. The novel polymers can extend the minimum 
applicability range of permeability, and it has high relevance for future research & 
development. 
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3. FIELD DEMONSTRATION OF THE IMPACT OF FRACTURES ON 
HYDROLYZED POLYACRYLAMIDE INJECTIVITY, PROPAGATION 

AND DEGRADATION 
 

3.1 Introduction 
 

The investment in chemicals during a polymer flood can amount to tens of 
millions to hundreds of millions of dollars. Thus, any polymer degradation (and 
consequently reduced polymer solution viscosity) can incur a substantial cost. 
Mechanical and oxidative degradation are two major concerns during a polymer 
flood [31; 32; 104; 106; 108; 130; 131]. Straightforward calculations, coupled with 
laboratory results, reveals that mechanical degradation of HPAM (hydrolyzed 
polyacrylamide) polymers will be quite high during injection into unfractured 
vertical wells [104]. In contrast, if a fracture is open at the injection well, calculations 
suggest that the increased rock-face area associated with the fracture reduces fluid 
velocities to the point that mechanical degradation of HPAM is no longer a concern 
[104; 106]. (The fracture could be newly created, a previously induced hydraulic 
fracture, or an existing natural fracture.) A significant part of this chapter is 
dedicated to testing/confirming this prediction in a field application. This 
confirmation required developing a method to back-produce polymer solutions 
without inducing further mechanical or oxidative degradation. As will be revealed 
in our literature review, most previous attempts to collect polymer from a reservoir 
have induced substantial degradation during the sampling/measurement process. In 
contrast, our method is quick, simple, cheap, and reliable. 

Previous calculations [52; 104; 109; 111] suggested that polymer injectivity into 
vertical wells would be unfeasible without open fractures. In contrast, others [26; 
27; 28; 29] attempted to justify observed field polymer injectivities using 
controversial assumptions about HPAM rheology during radial flow (i.e., in 
unfractured vertical wells). This raises the question: “How do we know that we 
actually have a fracture intersecting our injection well?” In this chapter, this question 
will be answered using a combination of calculations, laboratory tests of polymer 
rheology in porous media, and field tests using pressure transient analysis and step-
rate tests. 

An additional benefit from this study was confirmation that contact of HPAM 
solutions with the reservoir rock promoted polymer stability by removing dissolved 
oxygen. As will be shown, solutions that were back-produced from the injection well 
and those that propagated from an injector to a producer (Chapter 4) contained 
dissolved oxygen levels that were substantially lower than those of injected fluids. 
This finding is consistent with known geochemistry and results from other field tests 
[31; 106]. 
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3.2 Literature Review 
 
Viscosity/molecular weight of produced polymer solutions. If polymer 

solutions are produced from reservoir production wells with no loss of viscosity or 
molecular weight, that knowledge could comfort the operator that the polymer did 
not deteriorate by any degradation mechanism. Several field applications attempted 
to quantify polymer degradation of produced fluids and suggested severe loss of 
polymer molecular weight. A sampling of production wells at Daqing revealed 
~80% viscosity loss for HPAM after traveling ~800 ft through the Daqing sand at 
45°C [19; 20; 106; 133]. After 2-3 years of residence time in the Daqing reservoir, 
You et al. (2007) [134] reported that polymer molecular weight decreased by 92% 
(from 19.8 million daltons to 0.89 million daltons), and the degree of hydrolysis 
increased from 28% to 36.2%. You et al. (2007) [134] also reported that HPAM 
molecular weight decreased by 77.2% (from 17.3 million daltons to 3.94 million 
daltons), and the degree of hydrolysis increased from 22.3% to 38.2% upon flowing 
through the Shengli reservoir (70°C, 2-3 years residence time). After transiting the 
Shuanghe (Henan) reservoir (70°C, 2-4 years residence time), You et al. (2007) 
[134] reported HPAM molecular weight decreased by 84.6% (from 15.2 million 
daltons to 2.35 million daltons), and the degree of hydrolysis increased from 23.7% 
to 59.5%. For HPAM produced from the Courtenay polymer flood (30°C), Putz et 
al. (1994) [135] noted that the HPAM lost about half of its viscosifying ability. 
Manichand et al. (2013) [106] reported that early efforts at characterization 
suggested an 83% decrease in polymer molecular weight after flow through the 
Tambaredjo field (Suriname, 38°C). These losses seemed excessive, considering the 
temperatures of the fields. Previous laboratory work indicated that HPAM solutions 
should be quite stable, considering the conditions present in most low-temperature 
reservoirs [31; 40; 136; 137]. So, the field observations are troubling since they raise 
questions about when and how polymer degradation occurred. If the polymer 
degraded during or shortly after injection, the polymer flood may not be viable. On 
the other hand, if degradation occurs at or near the production wells, the degradation 
has little or no negative impact. For the cases mentioned above where pessimistic 
assessments of polymer degradation were made, it is prudent to ask whether an 
improved sampling method might result in less observed degradation (i.e., more in 
line with the predictions made from laboratory results). 

Fortunately, Manichand et al. (2013) [106] demonstrated that at least for the 
Suriname case, the observed degradation was an artifact of the method used to 
sample and measure the viscosities of the produced polymer solutions. This method 
used the traditional method of first flushing the sample cylinder from the bottom to 
the top and producing several cylinder volumes of fluid before closing the cylinder 
valves. However, in addition, after the cylinder arrived at the lab, a plastic 
attachment was placed at the bottom of the cup of the UL (ultra-low) adapter of the 
Brookfield viscometer. Tubing was connected from the bottom of the sample 
cylinder to this plastic attachment on the viscometer. Then nitrogen was introduced 
into the top of the sample cylinder to force the fluid sample into the viscometer cup. 
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The flow was allowed to overflow from the top of the viscometer cup to flush out 
all oxygen. After this fluid overflow showed undetectable dissolved oxygen, the 
viscometer was turned on to measure the viscosity of the anaerobic sample. Using 
this improved sample collection and analysis method, they proved that the HPAM 
solutions propagated through 330 ft of the Tamboredjo reservoir with no significant 
degradation. Their work confirmed that although polymer solutions may have high 
dissolved oxygen levels upon injection, iron minerals in the formation quickly 
removed that oxygen. Oxygen-free polymer solutions can then readily dissolve iron 
during propagation through the reservoir. This dissolved iron (Fe2+) is not 
detrimental to the polymer so long as oxygen is not redissolved in the solution [32]. 
Thus, an effective sampling method must keep the sample anaerobic; otherwise, 
oxidation may mislead the operator that severe polymer degradation occurs. This is 
an important lesson that we incorporated in our methodology. 

Laboratory assessment of mechanical degradation. Many laboratory methods 
were developed to predict mechanical degradation in tubing, the near-wellbore zone, 
and under reservoir conditions [28; 104; 106; 108; 130; 131; 138; 139; 140; 141; 
142; 143]. A common feature of these methods is the determination of the viscosity 
of polymer solutions before and after the test. Tests were performed using field 
cores, sand-packs, outcrop cores, and blenders. These laboratory tests injected 
polymer solutions at different flow rates (flux or Darcy velocity) to model fluid 
velocities through perforations, the near wellbore, and within the reservoir. 
Assumptions made for different flow regimes (velocities) were often based on the 
Darcy radial-flow equation. In contrast, most of the worldwide polymer flood 
projects injection in vertical wells occurs above the formation parting pressure [52; 
104; 112], where the linear flow was expected. (Here, in our terminology, “parting 
pressure” is simply the pressure at which a fracture or fracture-like feature opens. It 
may be the first time the fracture was created or alternatively that a fracture that was 
created previously but subsequently closed when the pressure was reduced.) To test 
and complement these ideas, there is considerable value in reviewing field 
experiments where polymer degradation was assessed directly using downhole 
sampling from a polymer injector [142; 144], samples collected from an observation 
well near the injector [145], or from a polymer production well [106]. 

Field assessment of mechanical degradation. Field operators in Austria [142], 
Angola [145], China [144], and Suriname [106] conducted field tests to assess 
polymer degradation near wellbore and deep in the formation by direct methods. 
These field cases used partially-hydrolyzed polyacrylamide, which is the same type 
of polymer used in the Kalamkas field.  

In the Austrian field test, the injected polymer solution was back-produced using 
a swabbing unit. In addition, swabbing was performed after injection. The test results 
showed that molecular weight decreased from 20 MDalton to 8 MDalton (60% 
degradation).  

The Dalia (offshore Angola) field test collected bottom-hole samples from a 
special observation well, which was drilled 80 m from a polymer injector. This 
observation well was located upstream of the polymer front (which was located 
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using 4D seismic monitoring). A Modular Dynamic Tester was tested onshore to 
confirm that the polymer solution did not suffer severe degradation during sampling. 
Based on onshore test results, the operator added precautions, such as using new 
valves, coated pipes (i.e., with Sulfinert™), flushing dead volumes with ultrapure 
nitrogen to remove oxygen, and careful flow rate control. The analyses of samples 
showed that the average degradation was 75% and polymer concentration was in the 
same range as the injected solution. 

During a field test in China [144], downhole polymer solutions were recovered 
using coiled tubing and a nitrogen-assisted flow-back technique. Direct 
measurements of the concentration and viscosity revealed that the polymer solution 
was degraded, with the viscosity of the polymer reduced to one-third of injected 
value. Initial viscosity was 21.5 cp and, after flow-back from 0.24-m into the 
reservoir formation, was degraded to 7.7 cp. 

The above field tests might be viewed as disheartening because so much polymer 
degradation was noted. However, one must ask whether the sampling method is the 
source of the apparent degradation. A field test in Suriname collected anaerobic 
polymer solution samples from production wells. Manichand et al. (2013) [106] 
using a simple sampling procedure that allows collection of polymer samples from 
a well, introduction into a Brookfield viscometer, and viscosity measurement – all 
under anaerobic conditions. Viscosity measurements of samples revealed that the 
polymer solution effectively propagated from an injector to a producer (~330 ft) with 
no significant degradation. In their case, based on analytical calculations, polymer 
solution injectivity was 61 times greater than expected for injection into an open-
hole completion, and the fracture area was roughly 61 times greater than that 
associated with an open hole. This area equated to a fracture that extended radially 
20 ft from the well. By increasing the sand-face area by a factor 61, the velocity 
when the polymer enters the formation is reduced in proportion, and as a 
consequence, the possibility of HPAM mechanical degradation is reduced. 

Importance of fractures. Because of a fear that fractures might cause severe 
channeling, one might desire to inject polymer solutions under conditions where 
fractures are not open near an injection well. However, in vertical injection wells, 
simple Darcy-law calculations reveal that without open fractures, polymer injection 
below the formation parting pressure will reduce injectivity (relative to water 
injection) by at least 80% [104]. One can easily test this idea in any existing polymer 
flood field injector to prove its validity [19; 106; 52]. Consequently, it is commonly 
argued that all vertical polymer injection wells, and even most water injection wells 
have open fractures [104; 109; 111]. For horizontal wells, the necessity to inject 
polymer above the formation parting pressure is significantly less [104]. 
Nevertheless, horizontal wells may still intersect fractures or fracture-like features 
[104; 147]. For those cases, fluid flow profiles should be used to identify the location 
of the fracture-like feature—and consideration can be given to the value of plugging 
this feature (e.g., using a gel treatment [148]). 

Alternative views of polymer injectivity and mechanical degradation. Much 
of the literature mentioned above argues that fractures or fracture-like features must 
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be open during most/all previous field polymer floods where polymer solutions were 
injected into vertical wells. At the heart of this argument is the observation in 
most/all previous field polymer floods that the injectivity during polymer injection 
was not substantially different than that during previous water injection [19; 20; 52; 
104; 106; 111]. For example, suppose a 10-cp Newtonian polymer solution is 
injected into a vertical well with no fractures. In that case, the Darcy equation 
predicts substantially lower injectivity (e.g., perhaps, roughly 10 times lower) than 
1-cp water—especially because viscous behavior near the wellbore dominates flow 
resistance during radial flow. However, contrasting viewpoints have been argued in 
the literature. 

Delamaide (2019) [29] advocated an analytical method to estimate injectivity of 
HPAM solutions in vertical wells with no fractures. His model assumed shear-
thinning rheology for HPAM solutions at near-wellbore velocities, which 
contradicts all experimental studies [104; 108; 130; 131; 141; 149; 150; 151]. Thus, 
this model appears to use two opposing incorrect assumptions (i.e., no fractures and 
no shear-thickening behavior at high velocities) in an attempt to match observed 
field injectivities. Even with these assumptions, the author had difficulty matching 
observed field injectivities. 

Skauge et al. (2016) [27] performed radial and linear core floods with HPAM 
solutions. They advocated that transient phenomena during radial flow caused 
substantial differences in polymer rheology in porous media that were not consistent 
with observations during linear flow. They suggested that these differences might 
explain why injectivities during polymer injection during field applications were not 
much lower than those during water injection. However, no calculations or analyses 
were performed to examine whether this suggestion was possible. In their work, 
throughout the full range of examined fluid velocities (0.01 to 40 ft/d), the apparent 
viscosity never fell below 80 cp. Thus, the injectivity loss could not be less than that 
of a 80-cp Newtonian fluid [104]. Consequently, Skauge et al. (2016) [27] arguments 
can not quantitatively rationalize observed field injectivities as similar to water. 

Asen et al. (2019) [28] argued that mechanical degradation of HPAM solutions in 
linear flow was significantly overestimated compared to that in radial flow. They 
predicted this result because during many cycles of injection of a single HPAM 
solution and re-injection into a linear core at a fixed velocity, they observed 
additional degradation during each cycle. They advocated that HPAM mechanical 
degradation would continue through up to 20 meters during linear flow in porous 
media. In contrast, all other previous researchers [108; 130; 131] consistently 
reported that HPAM mechanical degradation in linear flow was stabilized within 1-
cm after entering the porous media. Close examination of the work of Asen et al. 
suggests that their extended degradation results were due to oxidative degradation 
that occurred between each cycle of HPAM re-injection. Whether or not the results 
of Asen et al. are accepted, all authors agree that HPAM that passed the sandface in 
radial flow would retain a significant resistance factor (e.g., 10 or greater for most 
practical HPAM solutions). Straightforward Darcy flow calculations consistently 
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reveal that such polymer solutions would cause injectivity reductions (relative to 
water) of at least 80% in radial flow [104; 131]. 

Lottollahi et al. (2016) [152] performed a “mechanistic simulation” of polymer 
injectivity associated with selected field tests. Their model purported to include 
shear-thickening/viscoelastic behavior of HPAM solutions, shear-thinning at low 
rates, presence of “junk” (undissolved particulates) in the polymer, polymer 
retention, and permeability reduction effects, but did not include the presence of 
fractures or fracture-like features (i.e., the radial flow was assumed around vertical 
polymer injection wells). The absence of fractures was assumed in the simulation, 
despite literature stating fractures were present in the modeled field (Matzen, 
Austria) and also despite a substantial initial water saturation (50%) and water 
breakthrough noted in the field. The work of Lottollahi et al. predicted very modest 
injectivity declines (no more than 50%) even for cases where the injected polymer 
viscosity was 10-100 cp and the polymer penetrated substantial fractions of the 
distance between injectors and producers. These predictions appear to be a strong 
violation of the Darcy equation, and the apparent contradictions were not addressed 
in the paper. One would have expected “mechanistic simulations” to explain such 
surprising results. “Black-box” predictions from a simulator are difficult to 
understand without first benchmarking against basic physics and common sense. 

Tai et al. (2021) [153] provided an improved method for calculating pressures in 
vertical polymer injection wells during simulations. They acknowledged that 
fractures might cause enhanced polymer injectivity. However, they pointed out that 
the concept of “pressure-equivalent radius” was commonly used to characterize 
bottom-hole pressures and injectivities during simulations. In effect, the gridblock 
that contains the vertical injection well is assumed to contain a much larger effective 
wellbore radius than actually exists in any unfractured open-hole completion. This 
procedure substantially increases the sandface area available to polymer entry into 
the porous medium—just as a fracture would. We respect this approach for 
accommodating observed injectivities during simulations. However, since the 
procedure assumes a circular “wellbore”, it does not account for the directional 
nature of fractures and fracture growth. 

Perhaps the great lengths that some have taken to deny the presence of fractures 
during polymer injection into vertical wells stem from government regulatory 
policies to “stay below the fracture or parting pressure during injection.” These 
policies were understandably implemented to prevent fractures from developing that 
caused either severe channeling between injectors and producers or flow “out of 
zone” (i.e., breaking through flow barriers above or below the target formation). In 
the present paper and work, rather than to deny the presence of fractures, our 
approach is to accept and take advantage of the fact that fractures can have a very 
beneficial effect on injectivity, sweep improvement, and reduction of mechanical 
degradation during HPAM injection into vertical wells [52]—if the fractures do not 
extend too far to cause channeling problems. 

One could argue that the most definitive way to establish that open fractures were 
responsible for mitigating HPAM mechanical degradation during a field project is 
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to compare viscosities of back-produced solutions while injecting polymer below 
the formation parting pressure versus above the parting pressure. Unfortunately, this 
suggestion is not practical in a real field setting, because the rates and injectivities 
are prohibitively low when the fractures (or fracture-like features) are not open 
during polymer injection into vertical wells. We have consciously looked for such a 
case throughout the literature and in discussions with field operators over the past 
43 years—and have found none. 

3.3 Methods, procedures, equipment 
 
Injector back-produced sampling. At the Kalamkas field, a special scheme 

(Figure 3.2) and procedure were developed to gather back-produced samples at the 
wellhead of polymer Injectors 20XX, XX24 and XX41, and assess in-situ polymer 
mechanical degradation. The polymer injectors geological and technical information 
are shown in Table 3.1. A dedicated process pipe was installed for connection to a 
mobile pump unit. The sampling procedure operated as follows. First, after stopping 
the polymer injection unit, close all valves at the wellhead. Subsequently, open the 
sampler to decrease pressure between the check and wing valve. Then connect the 
mobile pump unit and the pressurized cylinder to the sampler. At this stage, the well 
is ready for back-flow sampling. Further, open required valves and allow polymer 
back-flow through the measuring tank of the mobile pump unit. Then, collect 
samples and change cylinders when certain volumes of polymer solution are 
reached. Sampling should be carried out with sufficient flushing of the cylinders (3-
5 volumes of the cylinder) with the polymer solution to prevent air from entering the 
sample. 

After collecting samples, immediately transport the pressurized cylinders to the 
field lab to measure viscosity, using a high-precision rheometer (Anton Paar MCR 
502) and aerobic conditions. Because the field laboratory does not have a glove box 
that provides oxygen-free conditions, polymer solutions must be tested immediately 
(i.e., within 10-15 minutes after collection in the pressurized cylinder). 

Measurement of viscosity of each sample should be repeated twice and averaged 
under conditions of minimal divergence. If the values are not similar, the 
measurement should be repeated. Test conditions: shear rate 7.34 s-1 at room 
temperature (~25ᵒC). The use of a shear rate 7.34 s-1 is commonly used as a standard 
single-point for comparison of viscosities for non-Newtonian enhanced oil recovery 
fluids (2; 52; 106; 141). The test temperature of ~25ᵒC is convenient and reasonably 
close to the reservoir temperature (40°C). The viscosity ratio at ~25ᵒC (room 
condition) to that at 40ᵒC (reservoir condition) is roughly equal to 0.85, i.e., if the 
test temperature increases from room to reservoir temperature, polymer solution 
viscosity simply decreases 15%. Because most liquids (including polymer solution) 
are incompressible at low or medium pressures, a considerable change in pressure 
from 14.5 to 4350 psi causes no significant change in viscosity [154]. Therefore, the 
reservoir pressure condition for polymer solution viscosity measurement is not 
essential. 
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This test procedure was carried out during planned repair work of the polymer 
injection unit. Consequently, the test did not affect the injection unit uptime. Also, 
the test has a low cost and can be done in a short time (< 6 hours). 

The new method to evaluate polymer mechanical degradation was tested in 
Injection Well 20XX of the West Pilot area and Injection Wells XX24, XX41, XX37 
of the East Extension area (Figure 3.1). 

 

  
Figure 3.1 — Polymer flood project locations in the Kalamkas field. 

 
Estimated depths (Dsample) away from the wellbore of the collected samples 

were calculated based on three equations with different assumptions: Eq. 3.1 is based 
on the radial flow geometrical calculation; Eq. 3.2 is based on Eq. 3.1 and 
additionally considering connate water (Swc) and residual oil saturation (Sor); Eq. 3.3 
is based on fracture flow geometrical calculations: 

 
Dsample =  100x√(Vp− Vtubing−Vcasing

π·h·∅
)………………………….……(3.1) 

 
Dsample =  100x√(Vp− Vtubing−Vcasing

(1−Swc−Sor)·π·h·∅
)………………………….……(3.2) 

 
Dsample =  100x(Vp− Vtubing−Vcasing

2·𝑤𝑤·h
)………………………...………(3.3) 

Estimated depths for different assumptions (equations) and detailed injection 
wells information are shown in Table 3.1. Note that no matter which equation is 

Figure legend:

Note: bubbles area are proportional to the liquid injection (or production) rate

West Pilot Bubble Map East Extension Bubble Map

Kalamkas Field Map

Field boundary Injection well Production well

Polymer flood area Polymer injection well

XX87
XX37XX24

XX41

Water injection well after polymer flood (previously East pilot)

20XX
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applied, the calculations reveal that the back-produced volume from the injection 
wells was large enough to gather samples that were previously within the formation. 
 
Table 3.1 — Wells’ detailed information and the sample depth estimation for different assumptions 
(equations) 

Parameters Well XX24 Well XX41 Well 20XX 
Tubing length (MD), m 775 780.05 735.06 
Formation top (MD), m 780 804 795 
Inner Diameter of Tubing, m 0.062 0.0503 0.062 
Inner Diameter of Casing, m 0.14 0.0995 0.14 
Perforated reservoir thickness (h), m 10 8.5 10 
Porosity (ø), unit fraction 0.29 0.29 0.31 
Swc, unit fraction 0.2 0.2 0.2 
Sor, unit fraction 0.3 0.3 0.3 
w, m 0.00381 0.00381 0.00381 
Vtubing 2.340 1.550 2.228 
Vcasing 0.077 0.186 0.877 
Vp 4 7.2 12 
Vf 1.583 5.464 8.895 
Deepest Dsample (1), cm 42 84 146 
Deepest Dsample (2), cm 59 119 207 
Deepest Dsample (3), cm 2078 8436 27422 

 

 
Figure 3.2 — Scheme to collect back-produced polymer solutions from Injector XX24. 

 



46 
 

Polymer-solution sampling used a pressurized cylinder. The pressurized cylinders 
and collection procedure were specially designed for the polymer flood project to 
protect the solution from oxidative degradation [106; 139]. These cylinders are made 
of stainless steel and coated with an inert material to prevent corrosion and any iron 
contamination. Oxygen can be effectively excluded by carefully flushing air from 
the cylinder with polymer solution while collecting the sample. 

Overall, the above methods, processes, and special surface equipment schemes to 
assess polymer solution mechanical degradation are quick, simple, cheap, and (most 
importantly) reliable. They were considerably easier and perhaps more reliable than 
those described in some other field tests [142; 144; 145]. Based on these other field 
tests where substantial degradation was observed, one could argue that our methods 
are more reliable since they revealed only minor mechanical and/or oxidative 
degradation of HPAM samples and since laboratory and theoretical findings 
suggested that degradation should not have occurred under the conditions of the 
other field tests. 

 

3.4 Field test results and discussion 
 

Injector back-produced sampling. Our method for collecting back-produced 
HPAM solution samples was applied in three polymer injection wells: XX24, XX41, 
and 20XX. The first two applications allowed us to perfect the technique, while the 
third (in Well 20XX) was most successful and definitive. In each case, 6-7 samples 
were collected as the injection well was depressurized and flowed-back. The starting 
and ending wellhead pressures were 696 and 145 psi for Well XX24, 465 and 392 
psi for Well XX41, and 640 and 162 psi for Well 20XX, respectively. The total 
volumes of back-produced fluid were 4 m3 for Well XX24, 7.2 m3 for Well XX41, 
and 24 m3 for Well 20XX. The maximum distance of sample penetration of fluid 
radially into the formation (as estimated using the radial flow equation, Eq. 1) was 
42 cm for Well XX24, 83.5 cm for Well XX41, and 146 cm for Well 20XX. Table 
3.2 lists results for the third and most successful test (in Well 20XX). 

For our first attempt using the procedure (in Well XX24), most of the back-flowed 
samples contained suspended solids—apparently, because depressurization 
dislodged some loose sand from the formation. Viscosities on these samples were 
measured both before and after filtration to remove the suspended solids. Filtration 
caused a very little reduction in viscosity, indicating that the suspended solids did 
not strongly affect the viscosity measurements. After filtration, the last six of the 
seven samples collected (representing fluid origins from 10 to 42-cm into the 
formation sand) experienced viscosities no lower than the injected polymer solution. 
The exception was that the first sample was collected after 1.2 m3 of back-flow. This 
sample originated from 390 m along the tubing (about the middle of the total tubing 
length) and exhibited 32% lower viscosity than the originally injected fluid. We 
suspect that this viscosity loss was due to oxidative degradation because some air 
leaked into the piping during the process of setting up our collection system.  
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In the second test (in Well XX41), the first five (of six total) back-produced 
polymer samples exhibited viscosity losses ranging from 50-75% of original 
viscosity. This case particularly introduced a significant amount of air while 
preparing for the test. Specifically, the air was introduced when the sample cylinder 
was (see Figure 3.3) added/connected between the check valve and the wing valve 
(which required depressurization of the system). The air subsequently contributed to 
oxidative degradation, as seen in the first five back-produced samples. In contrast, 
the sixth and final sample collected (after 7.2 m3 of flow-back and originating from 
an estimated 83.5 cm into the formation) exhibited no viscosity loss relative to the 
injected polymer solution. 

 

 
Figure 3.3 — Illustration of air (oxygen) entering the pipe and its influence during the test 

 
The test results from Wells XX24 and XX41 revealed that samples recovered 

relatively early in the sample-recovery process experienced some level of oxidative 
degradation. Therefore, we prepared a special adapter and improved our sampling 
method. In this improvement, this adapter was connected to the top valve (Figure 
3.4), thereby preventing oxygen from entering the pipe and wellbore space. To 
confirm this improvement, we measured dissolved oxygen levels throughout the 
testing procedure.  

For Well 20XX, the planned back-produced volume was increased to 24 m3 (3 
times more than previous tests). The beginning wellhead pressure was 640 psi and 
the test-ending pressure was 162 psi. 
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Figure 3.4 — The improved scheme to collect back-produced polymer solutions from Injector 

20XX. 
 

Back-produced sampling for Well 20XX occurred on 24th August of 2021. During 
the test, six samples were collected, including the first sample at the wellhead as a 
base sample. The typical surface temperature was 33ºC during the collection. 
 
Table 3.2 — Rheology measurements of the back-produced polymer solution from Injector 20XX 

No. 
cylinder 

Back-produced 
volume at the 

measuring tank, m3 

The estimated location of the 
collected sample 

Loss of 
viscosity 

Dissolved O2 
concentration, ppm 

1 0 wellhead (initial viscosity) 0% 0.2-0.3 
2 8 71 cm away from the wellbore 8% 0 
3 12 96 cm away from the wellbore 0% 0 
4 16 115 cm away from the wellbore 0% 0 
5 20 132 cm away from the wellbore 0% 0 
6 24 146 cm away from the wellbore 0% 0 

1(API RP 63 1990) 
The distance away from the wellbore calculated based on Eq. (1) 

 

 
Well 20XX wellhead injected initial viscosity was 15.7 cp. The samples of the 

back-produced polymer solution (Table 3.2) did not suffer oxidative degradation, 
except a minor viscosity loss of 8% for Sample No. 2. This small viscosity loss may 
have been associated with a small amount of oxidation because of the 0.2-0.3 ppm 
oxygen that was injected. The first sample from the wellhead showed 0.2-0.3 ppm 
dissolved oxygen, and other samples from the formation contained no detectable 
dissolved oxygen—thus, demonstrating the effectiveness of our improved sample-
collection method. Polymer solution Samples No. 2 to 6 that temporarily penetrated 
a few meters into the formation were depleted of dissolved oxygen, even though 
injected solutions contained 0.2-0.3 ppm oxygen. Presumably, the 2-4%-iron 
mineral content of the reservoir rock caused this oxygen depletion. Even though this 
process added dissolved iron to the solutions, the HPAM did not degrade so long as 
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the dissolved oxygen level remained low. To our knowledge, this is the first time 
that back-produced HPAM samples from an injection well have been demonstrated 
to contain no dissolved oxygen. 

Overall, rheology measurements demonstrated the absence of polymer solution 
mechanical degradation during polymer injection in Wells 20XX, XX24 and XX41. 

Figure 3.5 plots flux versus distance from the wellbore dependence for Injectors 
20XX, XX24 and XX41. This calculation was based on Eq. 3.4 and specific 
conditions of the injection wells (Table 3.3). (In this case, the flux is defined as a 
ratio of injection rate to radial flow filtration area.)  

 
Flux =  3.28084x(Injection rate

2·π·R·h
) ………………………….……(3.4) 

 
where, Flux = ft/d; 
 3.28084 = multiplier to convert meters to feet; 
 Injection rate = m3/d; 
 2 · π · R · h = the filtration area based on a radial flow, m2; 
 R = distance from the wellbore, m; 
 h = perforation thickness, m. 
 

Table 3.3 — Injection conditions for Wells 20XX, XX24 and XX41 
Parameters Well XX24 Well XX41 Well 20XX 

Injection rate, m3/d 400 295 326 
Perforation thickness, m 10 8,5 10 

Distance from the wellbore, m 0.10 – 0.42 0.086 – 0.835 0.71-1.46 
Calculation assumptions Open hole with no fracture present 

 
Calculations using Eq. 3.4 assume an open hole completion (i.e., assuming no 

fracture was present), so a certain distance (radius) from the wellbore corresponded 
to the estimated depth of collected samples (based on Eq. 1). In Figure 3.5, Sample 
No. 3 for Well XX24 and No. 4 for Well XX41 exhibited the highest flux (>200 
ft/d). Of course, flux decreased with increased distance (radius) from the wellbore. 
Sample No. 6 for Well 20XX exhibited the lowest flux (~12 ft/d). Based on our 
laboratory experiments in a 769 md Kalamkas reservoir core for 1800 ppm R-1 
HPAM polymer in Cretaceous formation brine (10.9% TDS), and consistent with 
other analog works [104; 130], mechanical degradation occurs at a flux higher than 
5 ft/d. Those results suggest that for polymer injection wells, such as 20XX, XX24 
and XX41, if injection occurs without open fractures, polymer solutions should 
exhibit substantial mechanical degradation. In contrast, our rheology study of 
formation samples revealed that the polymer solution did not exhibit mechanical 
degradation. This confirms that those injectors have open fractures with a high 
injection area which allows flux to be lower than 5 ft/d. 
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Figure 3.5 — Flux versus distance from the wellbore, Well XX24 and XX41. 

 
Pressure fall-off tests. To obtain valuable well test data, we ran pressure fall-off 

tests in injection wells. These tests were perfomed during polymer injection for 
Wells XX24, XX41, 20XX and XX37 in 2020 and during the water flood in 2019, 
except Wells 20XX and XX37 (well tests not conducted). For Wells XX24 and 
XX41, two combined pressure transient analyses are presented in Figure 3.6 and 
Figure 3.7, and their interpretations are in Table 3.4 and Table 3.5. For Well XX37, 
pressure fall-off test analysis during polymer injection is presented in Figure 3.8 and 
Table 3.6. For Well 20XX, pressure fall-off test analysis during polymer injection is 
presented in Figure 3.9 and Table 3.7. The pressure transient analysis includes 
plotting pressure versus time and the Bourdet derivative on a log-log scale (based on 
[156]). Comparison and analysis of two pressure curves (original and derivative) for 
each flood can reveal signatures of numerous well, reservoir, and boundary 
behaviors. In our case, the analyses of pressure fall-off tests indicated the absence of 
fractures during water flood (green curves), but during the polymer flood (red 
curves), injection occurred above the formation parting pressure. The fracture half-
lengths for Wells 20XX, XX24 and XX41 were about 100 m. For Well XX37, where 
severe channeling and polymer breakthrough was observed, fracture half-length was 
close to the well spacing. We can see that polymer injection leads to natural well 
stimulation and as a consequence, the polymer solution flows through the 
perforations and near wellbore zone with an area high enough to ensure mechanical 
stability of the solution. If Wells 20XX, XX24, XX41 and XX37 were not fractured, 
injection of viscous polymer solution would necessarily decrease injectivity, roughly 
in proportion to the polymer solution viscosity [104; 106]. In our case, the expected 
injectivity without open fractures would be 16 times lower than that for water. But 
in fact, our injectivity was enhanced by a factor from 1.3-2.1. 
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Figure 3.6 — Analysis of pressure fall-off tests during water and polymer injection into Well 

XX24. 
 
Table 3.4 — Analysis of pressure fall-off tests during water and polymer injection into Well XX24 

No. Parameter Value 
During water flood (2019) During polymer flood (2020) 

1 Perforation interval, Top-
Bottom 780-805 m 780-805 m 

2 Test duration, hours 69.2 146 

3 Wellbore storage (WBS) 
model Changing WBS Changing WBS 

4 Well model Vertical Vertical fractured finite 
conductivity 

5 Reservoir model Homogenous Homogenous 
6 Boundary model One fault Infinite 
7 Reservoir pressure, psi 1075 1270 
8 Conductivity, mD·m 3 764 8 596 
9 Average permeability, mD 362 860 

10 Total skin 13.4 -5.8 
11 Geometrical skin - -6.1 
12 Fracture half length, m - 101.0 
13 Fracture conductivity, mD·m - 7.93E+6 
14 Fracture permeability, mD - 39 292 
15 Injectivity index, bbl/(d·psi) 3.17 6.62 

 

 
Figure 3.7 — Analysis of pressure fall-off tests during water and polymer injection into Well 

XX41. 
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Table 3.5 — Analysis of pressure fall-off tests during water and polymer injection into Well XX41 
No. Parameter Value 

During water flood (2019) During polymer flood (2020) 
1 Perforation interval, Top-

Bottom 
804-807, 810-812, 813.5-817 m 804-807, 810-812, 813.5-817 m 

2 Test duration, hours 71.8  140.9  
3 Wellbore storage (WBS) 

model 
Changing WBS Changing WBS 

4 Well model Vertical Vertical fractured finite 
conductivity 

5 Reservoir model Homogenous Homogenous 
6 Boundary model Circle (Re-P-const) Infinite 
7 Bottomhole pressure, psi 1822 1874 
8 Conductivity, mD·m 972 3 604 
9 Average permeability, mD 135 424 

10 Total skin 1.46 -5.9 
11 Geometrical skin - -6.0 
12 Fracture half length, m - 102.3 
13 Fracture conductivity, mD·m - 4.45E+6 
14 Fracture permeability, mD - 2 174 
15 Injectivity index, bbl/(d·psi) 2.08 3.77 

 

 
Figure 3.8 — Analysis of pressure fall-off test during polymer injection into Well XX37. 
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Table 3.6 — Analysis of pressure fall-off test during polymer injection into Well XX37 
No. Parameter Value 

During polymer flood (2020) During water flood (2018) 
1 Perforation interval, Top-

Bottom 
806-810, 812.5-820.5 m 806-810, 812.5-820.5 m 

2 Test duration, hours 233.6 

N/A 

3 Wellbore storage (WBS) 
model 

Changing WBS 

4 Well model Vertical fractured finite 
conductivity 

5 Reservoir model Homogenous 
6 Boundary model Infinite 
7 Reservoir pressure, psi 1252 
8 Conductivity, mD·m 5 630 
9 Average permeability, mD 503.1 

10 Total skin -7.13 
11 Geometrical skin 0.1 
12 Fracture half length, m 308 
13 Fracture conductivity, mD·m 0.384E+6 
14 Fracture permeability, mD 623 
15 Injectivity index, bbl/(d·psi) 2.47 1.86 

 

 
Figure 3.9 — Analysis of pressure fall-off test during polymer injection into Well 20XX. 

 
Table 3.7 — Analysis of pressure fall-off test during polymer injection into Well 20XX 

No. Parameter Value 
During polymer flood (2020) During water flood (2014) 

1 Perforation interval, Top-
Bottom 

795-826 m 795-826 m 

2 Test duration, hours 163.5 

N/A 

3 Well model Vertical fractured finite 
conductivity 

4 Reservoir model Homogenous 
5 Boundary model Infinite 
6 Reservoir pressure, psi 1099 
7 BHP, psi 1794 
8 Conductivity, mD·m 1 260 
9 Average permeability, mD 440.5 

10 Total skin -6.16 
11 Geometrical skin 0.12 
12 Fracture half length, m 116 
13 Fracture conductivity, mD·m 0.1E+6 
14 Injectivity index, bbl/(d·psi) 3.86 2.21 
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Step-rate tests. To evaluate and confirm obtained results from pressure fall-off 
tests, we ran step-rate tests in water and polymer injection wells. These tests were 
performed at Polymer Injectors XX24 and XX41, and at Water Injector XX47, 
which is an offset well for polymer injectors, so it has the same reservoir 
characteristics (formation height, layering, permeability) and technical conditions 
(perforation intervals, injection rate, number of surrounded production wells, 
voidage replacement ratio, well spacing). Figure 3.10 plots injection rate vs. pressure 
drop for Wells XX24, XX41, and XX47. Step rate tests results and analysis are in  

Table 3.8.  
The step rate test was performed as follows. First, the injector current operating 

flow rate and wellhead pressure were measured. Next, we decreased the injection 
rate to the next step and allowed pressures to stabilize, and wellhead pressure was 
determined again. This process was repeated in stages to determine the wellhead 
pressures at lower flow rates. Then we converted wellhead pressures to the well 
flowing bottom hole pressures (BHP) and the reservoir pressure was determined by 
extrapolating the inflow performance relationship (IPR) curve to zero flow rate. 
Finally, we plotted flow rate and pressure drop associated with solid circles for 
Water Injector XX47, solid triangles for Polymer Injector XX41, and solid squares 
for Polymer Injector XX24. The resulting dashed lines are IPRs, and their slopes (a 
multiplier of “x” variable in the linear equation) are injectivity indexes. For the water 
injector, the flow rate was controlled by the choke. In contrast, for the polymer 
injector flow rate control was achieved by reducing the engine speed of individual 
plunger pumps. A flow rate of 144 m3/d was the lowest operating rate and 400 m3/d 
was the highest technical flow rate for an individual plunger pump within the 
polymer injection system. 

Comparison and analysis of IPRs during water and polymer injection confirms 
pressure fall-off test analysis that the injectivity index during polymer injection was 
much higher than during waterflood. The step rate test showed enhanced injectivity 
during the polymer flood relative to waterflooding (i.e., roughly 4 times greater than 
expected). Previous work has shown that viscoelastic (or shear thickening) behavior 
of HPAM polymers occurs at high fluxes, and as a consequence induces a fracture 
to form and extend in the well [109].  

The presence of fractures during the polymer flood is consistent with the fact that 
most of the worldwide polymer flood projects inject into vertical wells above the 
formation parting pressure [52; 104; 111; 112], where linear flow is expected. In 
contrast, if fractures or fracture-like features are not present during polymer 
injection, achieving a favorable economical injection rate and acceptable voidage 
replacement ratio (e.g., the same as during a waterflood) is not practical. 
Additionally, according to the analytical calculations of Seright (2017) [52] and the 
work of Dyes et al. (1958) [157], fractures may not seriously affect a sweep 
efficiency if the fracture half-length is less than 1/3 of the well spacing. These 
findings reveal that the advantages of fracture features during polymer flooding (i.e., 
little or no injectivity loss and mechanical stability of the polymer solution) outweigh 
its disadvantages (e.g., possible severe channeling, jeopardized sweep efficiency). 
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Table 3.8 — Analysis of pressure step rate tests during water and polymer injection into Wells 
XX47, XX24, and XX41 

# 
Ste
p 

Injection Rate 
(bbl/d) 

Water Injector XX47 Polymer Injector XX24 Polymer Injector XX41 
Pwellhead 

(psi) 
BHP 
(psi) 

dP 
(psi) 

Pwellhead 
(psi) 

BHP 
(psi) 

dP 
(psi) 

Pwellhead 
(psi) 

BHP 
(psi) 

dP 
(psi) 

1 906 319 1625 182 653 1851 40 544 1773 56 
2 1238 406 1709 266 682 1877 66 557 1783 66 
3 1630 450 1749 306          

4 1751           595 1815 98 
5 1887 537 1833 390 718 1907 95     

6 2521 638 1926 483 740 1933 122 638 1862 145 
7 3140 812 2090 647          

Reservoir pressure 
(psi) 1443 1811 1717 

Injectivity bbl/(d·psi) 4,9 20,0 17,4 
 

 
Figure 3.10 — Analysis of pressure step rate tests during water and polymer injection into Wells 

XX47, XX24, and XX41. 
 
Rheology in porous media and mechanical degradation. The purpose of this 

section is to demonstrate (using laboratory measurements) that severe mechanical 
degradation would have been observed during HPAM injection of our wells if 
fractures or fracture-like features were not present. Rheology in porous media and 
mechanical degradation are directly related to the fluid velocity or flux in porous 
media [104; 130; 106; 141]. Consequently, using the methods described in Seright 
et al. (2011) [141], we determined rheology in a 769-md Kalamkas reservoir core 
for 1800-ppm R-1 HPAM polymer in Cretaceous formation brine (10.9% TDS). 
Figure 3.11 plots resistance factor vs. flux for this solution. (Resistance factor is the 
effective viscosity in porous media relative to water.) Figure 3.12 plots viscosity 
(measured at 7.34 s-1 and 25ºC, and expressed as a percentage of the injected 
polymer-solution viscosity) for the effluent vs. flux at which the polymer solution 
was forced through the core. Figure 3.13 plots fresh polymer solution viscosity vs. 
shear rate before injecting in the reservoir core. 
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Figure 3.11 was generated as follows. First, we performed standard core analysis 
to determine porosity and permeability. Next, the core was saturated with Kalamkas 
Cretaceous formation brine and permeability was determined. Subsequently, we 
injected freshly prepared 1800-ppm R-1 HPAM (in the Kalamkas Cretaceous 
formation brine) at moderate flux (50 ft/d) and measured the stabilized resistance 
factor. Then we decreased flux to 30 ft/d and allowed pressures to stabilize and 
resistance factor to be determined again. This process was repeated in stages to 
determine the resistance factors associated with the solid squares in Figure 3.11. The 
dashed curve in Figure 3.11 shows viscosity vs. flux which corresponds to the 
calculated shear rate using the model described in Hirasaki and Pope (1974) [150]. 
Between 50 and 11 ft/d, the resistance factor appeared to be constant with decreasing 
flux. As flux was lowered from 11 to 1 ft/d, the resistance factor decreased 
dramatically with decreasing flux. The literature has reported this behavior [130; 
141] as a shear thickening or dilatant or viscoelastic effect. Shear thickening in 
porous media has been attributed to increased stresses and energy expenditure 
associated with disentanglement and elongation of coiled HPAM molecules as they 
flow through the sequentially contracting/dilating flow paths within porous media. 
For each flux between 50 and 5.2 ft/d, the polymer was mechanically degraded to a 
different extent, as demonstrated by the solid squares in Figure 3.12.  

For flux values lower than 1 ft/d, a modest shear thinning was seen, as resistance 
factor increased with decreasing flux (Figure 3.11) and no mechanical degradation 
occurred. Furthermore, this resistance factor increase correlated reasonably well 
with the polymer viscosity increase as shear rate (or flux) decreased. 

 

 
Figure 3.11 — Resistance factor vs. flux for R-1 HPAM in the Kalamkas water. 
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Figure 3.12 — Viscosities of solutions after being forced through the core at a given flux. 

 

 
Figure 3.13 — Viscosity vs. shear rate for 1800 ppm R-1 HPAM in the Kalamkas water. 

 
Recall from Figure 3.5 that the Darcy velocity (flux) at the injection sand face for 

an open hole completion would be over 200 ft/d. Thus, from Figure 3.11, the 
anticipated mechanical degradation would have been over 70% if the completion 
was the open hole with no fracture present. Therefore, the presence of the open 
fracture provides the logical explanation for both the observed lack of severe 
degradation and lack of severe injectivity loss for the HPAM injection well. 

Significant of the results. As mentioned earlier, the very large investment 
associated with the polymer bank during a polymer flood necessitates a 
determination that the polymer is not substantially degraded during the process of 
injection. This paper provides a new methodology that is much more cost-effective 
for assessing near-wellbore polymer degradation than in previous methods, and the 
methodology is demonstrated for an important field application in Kazakhstan. In 
addition, this paper provides field-based support that vertical polymer injection wells 
have open fractures that enhance injectivity. We especially demonstrate that these 
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fractures reduce polymer mechanical degradation to a level that mitigates this 
degradation concern in a field setting. 

3.5 Chapter Conclusions 
 

The goal of this chapter was to demonstrate certain predictions about the existence 
and effects of fractures on injectivity during injection of HPAM solutions into 
vertical wells during a polymer flood in the Kalamkas field. This chapter provides 
field evidence to clarify the utility of near wellbore fractures to promote injectivity 
and mitigate mechanical degradation of HPAM solutions. It also provides a sampling 
methodology that demonstrated minimum mechanical and oxidative degradation 
under field circumstances, whereas previous sampling methods may have provided 
overly pessimistic indications of HPAM stability. The following findings were 
noted: 

• Step rate tests indicated that fractures were not open during water injection 
before polymer injection. In contrast, during polymer injection, open 
fractures were confirmed using step rate tests, pressure transient analysis, 
and comparison of actual injectivities versus those calculated using the 
Darcy radial flow equation coupled with laboratory measurements of 
HPAM rheology in Kalamkas cores. 

• We developed a novel method to assess in-situ polymer solution 
mechanical stability during a polymer flood. Under Kalamkas field 
conditions, we demonstrated the collection of formation samples using the 
natural energy of a reservoir at the wellhead. This process protected 
polymer solution samples from oxidative degradation. Compared to other 
lab and field methods, this novel method is quick, simple, and inexpensive. 
Compared with other field tests where substantial degradation was 
observed, one could argue that our methods are more reliable since they 
revealed only minor mechanical and/or oxidative degradation of HPAM 
samples and since laboratory and theoretical findings suggested that 
degradation should not have occurred under the conditions of the other field 
tests. 

• Rheology measurements of back-produced polymer solutions showed the 
absence of the mechanical degradation. This finding provided further 
confirmation that polymer injection occurred above the formation parting 
pressure and that the injection area associated with the fracture was large 
enough to ensure the stability of the solution.  

• These findings confirm that the advantages of fractures or fracture-like 
features during a polymer flood (i.e., little or no injectivity loss; mechanical 
stability of the polymer solution) can outweigh their disadvantages (e.g., 
possible severe channeling, jeopardized sweep efficiency). 

• Polymer solutions that were back-produced from injection wells were 
depleted of dissolved oxygen, even though injected solutions contained 
200-300 ppb of dissolved oxygen and the polymer solutions only penetrated 
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a few meters into the formation. Presumably, the 2-4%-iron mineral content 
of the reservoir rock caused this oxygen depletion. Even though this process 
added dissolved iron to the solutions, the HPAM did not degrade so long 
as the dissolved oxygen level remained low. 

• As will be shown later in Chapter IV, Polymer solutions that propagated 
over 400 meters through a fracture from an injector to a producer were also 
depleted of dissolved oxygen, but suffered only minor viscosity loss (15%) 
after traveling all the way through the formation.  

• The significance and novelty of the last four conclusions may be 
appreciated by realizing that virtually all previous field tests (where 
produced samples were analyzed from production wells or back-produced 
samples were analyzed from injection wells) indicated substantial HPAM 
degradation (as revealed in our literature review). If accepted at face value, 
those previous results would cast serious doubt on the viability of all 
HPAM floods. In contrast, our results alleviate those doubts by 
demonstrating that HPAM stability in a field application is consistent with 
present and previous laboratory and theoretical expectations. Our results 
suggest that the lack of stability observed in the previous tests may have 
been due to problems with the sampling procedures—rather than 
degradation that jeopardized the polymer in the reservoir. 
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4. ASSESSING POLYACRYLAMIDE SOLUTION CHEMICAL STABILITY 
 

4.1 Introduction 
 

Most Kazakhstan oil fields formation water (including the Kalamkas field) have 
high salinity and iron content. Commonly, those oil fields have no alternative fresh 
or low salinity (i.e., without iron content) water source similar to Daqing [105] or 
Milne Point [107]. It is well known that the HPAM solution at sealed and anaerobic 
conditions is very stable if iron ions exist in the process water [32]. That is why a 
sealing system for a polymer injection unit is crucial. But in a field application, 
controlling dissolved oxygen content at “zero” level is challenging. [32] suggested 
that 200 ppb oxygen is the highest value where viscosity losses will be insignificant. 
In contrast, [108] found that 46 ppb can lead to 10% viscosity loss. [31] based on 
the geochemical calculation and laboratory experiment, revealed that high dissolved 
oxygen content (which can be introduced during polymer solution preparation and 
injection) after entering the sandstone with 1% pyrite (FeS2)—as in case of 
Kalamkas formation—can rapidly be depleted. Unquestionably, lower dissolved 
oxygen content leads to higher polymer chemical stability, and the “zero” 
(undetectable) level is an ideal case. So how much-dissolved oxygen will be feasibly 
acceptable in a real field setting? A significant part of this chapter is dedicated to 
testing and confirming those predictions in a field application at the Kalamkas 
polymer project. 

As mentioned in Chapter 1, the PSU was used for the West pilot and for the seven 
injectors East extension. The other four wells of East Extension were supplied by 
the eductor-type polymer unit. This conventional eductor works on the Venturi 
principle, and polymer powder is supplied by air injection. There is no action to 
isolate air from the unit (Figure 4.1). The time to fully dissolve the polymer in water 
for the PSU is ~45 minutes and for the eductor-type is ~3 hours. 

The water's dissolved oxygen level has been measured at the wellhead of 
production wells supplying West and East polymer projects. It was also measured in 
the water at storage tanks and in the mother solution from maturation tanks of the 
West PSU, the East PSU, and the East eductor-type polymer unit using CHEMets® 
express tests. The measurement results are shown in Table 4.1. Tests results reveal 
that at the formation, brine (from the wellhead) dissolved oxygen level is 
undetectable (less than 0.025 ppm or 25 ppb). This finding is consistent with the fact 
that Kalamkas oil reservoirs have a reducing environment due to iron-containing 
minerals up to 2-4% [31].  

As shown in Table 4.1 at the West polymer project, oxygen was introduced during 
water transportation from the production well to the storage tank, and its level was 
at 0.3-0.4 ppm. In contrast, this problem did not occur at the East polymer project, 
where the oxygen level at the storage tanks was undetectable. But during the polymer 
dissolving process, the oxygen was introduced into the mother solution. The oxygen 
level was 0.3-0.4 ppm for the PSU type system, and for the eductor-type unit was 2-
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3 ppm. For the PSU, the dissolved oxygen was close to the acceptable safe range, 
according to [32]. But for the eductor-type, this value is over 10 times higher than 
the acceptable level. As will be shown later, this unacceptable oxygen level resulted 
in 45% viscosity loss and the equivalent of 25% polymer concentration loss. 
 
Table 4.1 — The dissolved oxygen measurement results during polymer injection in the Kalamkas 
field 

Polymer injection 
unit 

Dissolved oxygen content, ppm 

Water producer Water storage tank Polymer mother 
solution 

Polymer Injector 

West PSU 0 0.2 - 0.3 0.3 - 0.4 0 – 0.3 
East PSU 0 0 0.3 - 0.4 0.3 

East eductor 0 0 2 - 3 1 - 2 
 

 
Figure 4.1 — Main components of the eductor-type polymer unit 

4.2 Experimental 
 
A field sampling of polymer solutions. To assess chemical stability, we 

compared laboratory prepared and sampled polymer solutions viscosities where 
polymer concentrations were the same as at the field. Mother solutions were sampled 
from polymer dissolving units (PSU and eductor type) and polymer solution from 
injectors wellhead. As a baseline for comparison, we used fresh polymer solution 
viscosities (the methodology will be shown later in this section). Viscosities were 
measured using a high-precision rheometer Anton Paar MCR 502 (Austria) at a shear 
rate of 7.34 s-1, at room temperature (25°C), and aerobic conditions. The use of a 
shear rate 7.34 s-1 is commonly used as a standard single-point for comparison of 
viscosities for non-Newtonian enhanced oil recovery fluids [2; 52; 106; 141]. 
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Because most liquids (including polymer solution) are incompressible at low or 
medium pressures, a considerable change in pressure from 14.5 to 4350 psi causes 
no significant change in viscosity [154]. Therefore, the reservoir pressure condition 
for polymer solution viscosity measurement is not essential. The viscosity of each 
sample was usually measured twice and then averaged. 

Polymer solution at the wellhead was collected in pressurized cylinders (Figure 
4.2). Pressurized cylinders and collection procedures were specially designed for the 
polymer flood project to protect the solution from oxidative degradation [106; 139]. 
These cylinders are made of stainless steel and coated with an inert material to 
prevent corrosion and any iron contamination. Oxygen can be effectively excluded 
by carefully flushing air from the cylinder with polymer solution while collecting 
the sample. 

 

 
Figure 4.2 — Pressurized cylinders for a polymer solution sampling at the wellhead 

 
The Brine, Polymers and Concentrations. Formation brine in this work was 

collected from the dedicated production wells of the Cretaceous water reservoir 
(which is used for polymer dilution, as shown in Table 4.2). Brines (West and East 
Producers) have high iron content. Consequently, after exposure to the air, Fe2+ 
reacts with oxygen. Therefore, to eliminate the effect of oxidized products, both 
brines are pumped by air to oxidize all iron from the solution and then passed through 
paper filters before further use. 
  



63 
 

Table 4.2 — Cretaceous formation brine physical and chemical properties 

Parameter 
Cretaceous formation brine 
(used for polymer dilution) 

West Producer East Producer 
pН 5.8 6.0 
Density, g/cm3 1.071 1.082 
Са2+ content, ppm 4 809.6 5 611.2 
Mg2+ content, ppm 1 702.4 2 067.2 
K+ and Na+ content, ppm 32 722.5 35 890.9 
Cl– content, ppm 63 810 71 254.5 
SO4

2- content, ppm 118.5 21.4 
СО3

2- content, ppm 0 0 
Total salinity, ppm 103 187.4 114 857.4 
Water type by Sulin 19461 Cl-Ca Cl-Ca 
Water hardness, mg-eq/l 410 470 
Iron (Fe) content, ppm 40.6 18.2 
Total suspended solids (TSS) content, ppm 14.0 12.0 
Dissolved oxygen content, ppm 02 02 

1 [22] 
2 dissolved oxygen content measured with CHEMets® express tests shows the undetectable value (less than 
0.025ppm or 25 ppb) 

 
Two powder-form partially hydrolyzed polyacrylamides (HPAM) (SNF products) 

were used: Superpusher K-129 and Polyacrylamide R-1. They had a molecular 
weight of 14 million Daltons and a hydrolysis degree of 16%. 

Polymer solutions were prepared by sprinkling the appropriate mass of polymer 
powder onto the brine vortex created by an overhead stirrer with a four-blade 
propeller. After mixing for several hours at a high rate, the stir rate was reduced for 
at least four hours and led to solution stand overnight. As in the field application, 
our target polymer concentrations for the three projects are in Table 4.3. 
 
Table 4.3 — Polymer concentrations for the laboratory study 

Polymer injection 
unit Polymer type Active polymer concentration, ppm  

Mother solution Injector wellhead  
West PSU Superpusher K-129 9 200 1 600 
East PSU Polyacrylamide R-1 15 000 1 700 

East eductor Polyacrylamide R-1 4 900 2 200 
 
A sampling of producer fluid. Many polymer flood projects reported that 

production wells responded to polymer flooding by watercut decreases and 
increased produced polymer concentration [20; 106; 132; 134; 155; 161]. In some 
cases, the polymer channeled directly from an injector to a producer through a 
fracture, i.e., producing the same polymer concentration as injected. This 
circumstance occurred at Kalamkas field, where severe channeling and polymer 
breakthrough was observed from Injector XX37 to Producer XX87 in June 2019. 
Note that this polymer-channeling problem developed only once during over 7 years 
of polymer injection (i.e., since 2014). The distance between the producer and 
injector was 400 m. After the breakthrough, polymer concentration increased 
roughly from undetectable values (i.e., <1 ppm) to the injected values. Injector 
pressure fall-off tests after polymer injection revealed that injection occurred above 
the formation parting pressure and the fracture half-length was close to 400 m. This 
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value is very close to the well spacing (Figure 3.8 and Table 3.6). Thus, in this 
particular case, the fracture was detrimental to sweep efficiency because it extended 
all the way from the injector to the producer. After several unsuccessful attempts to 
plug the fracture (both from the production and injection sides), the production well 
was shut down. 

Figure 4.3 shows Injector XX37 and Producer XX87 operation history before and 
after polymer breakthrough. This history indicates a powerful hydrodynamic 
connection expressed by a quick change of producer dynamic fluid level during an 
injector workover and after restoring injection. After the polymer breakthrough, the 
watercut increased from 87% to 100%. Tracer tests (Table 4.4 and Figure 4.4) during 
water and polymer injection confirmed that the source of polymer breakthrough was 
Injector XX37.  

This unusual case provided the opportunity to assess polymer solution chemical 
and mechanical stability that traveled all the way from the injector to the producer 
through the reservoir.  
 
Table 4.4 — The interwell tracer tests results on Polymer Injector XX37 and surrounding 
producers 

Date Tracer type Injected 
Mass, kg 

Injected 
V, m3 

Prod-ed 
M, kg 

Prod/Inj 
M, % 

A tracer 
reached well 

number 

Tracer max 
velocity, m/d 

Tracer min 
velocity, 

m/d 

Tracer average 
velocity, m/d 

Nov. 
2017 Urea 5000 18 147,8 2,96 25 1808 188 638 

Nov. 
2019 

Fluorescein 
(Uranin) 60 9 0,6172 1,03 1 (XX87) 2781 2781 2781 

Nov. 
2020 

Rhodamine 
C 60 18 0,1 0,11 6 1162 62 210 

 

 
Figure 4.3 — Well XX87 production and Well XX37 injection history, where polymer 

breakthrough was observed 
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Figure 4.4 — The interwell tracer tests results on Injection well XX37 and surrounding 

producers  
 

A special scheme (Figure 4.5) and procedure were developed to collect produced 
polymer solution samples from Producer XX87, and assess in-situ polymer stability. 
The production well was equipped with a production line valve, check valve, annulus 
valve, wing valve, pressure gauge, sampler, and X-mas tree. The well downhole was 
equipped with tubing and a rod pump. The top of the perforation interval was located 
at 806 m MD (measured depth), and the tubing end was at 590 m MD. A dedicated 
high-pressure hose was installed to connect the sampler to the pressurized cylinder 
to collect polymer solution samples at the wellhead. The special procedure was as 
follows as applied in Well XX87: 

• Stop polymer solution injection unit (including Injector XX37) for planned 
repair work for >6 hours. 

• Install pressure gauge, flow meter, and connect the pressurized cylinder to 
collect samples before putting on production well XX87.  

• Open wing and production line valve to put the well on the production and 
start to collect samples. 

• Open the sampler valve and flush several cylinder volumes with the 
produced polymer solution to prevent air from entering the sample. 

• Collect six samples (total) at different cumulative production volumes with 
the same procedure as described above and measure dissolved oxygen 
level.  

• Collect injecting polymer solution at Well XX37 (source of the polymer 
breakthrough) and measure dissolved oxygen level. 

• After collecting all samples, immediately transport pressurized cylinders 
to the field lab to measure viscosity. 
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• Viscosity measurements proceed as described above in the subsection “A 
field sampling of polymer solutions” and additionally determine the 
rheological power law index [21]. 

 

 
Figure 4.5 — Scheme to collect polymer solutions from Producer XX87 

 

4.3 Results and Discussion 
 

Effect of Dissolved Oxygen. As shown in Table 4.2, process water has a high 
content of dissolved iron. Therefore, if dissolved oxygen is introduced to the 
polymer injection system, it will cause chemical degradation. The PSU is designed 
to keep dissolved oxygen very low, and the Eductor type unit has no action to treat 
the oxygen or iron. Further, the effects of dissolved oxygen and Fe2+ on polymer 
viscosity for three polymer units are demonstrated in Table 4.5. Examination of this 
table first reveals that the PSU for both projects (West and East) has a good 
performance due to chemical stability. Chemical stability provided by nitrogen 
blanketing system and its efficiency is consistent with [32] work. The field viscosity 
of the PSU mother solution did not reach the lab viscosity. However, after 
subsequent dissolution processes, the solution reached the required polymer 
viscosity and dissolving quality at the wellhead. Finally, we can see that viscosity 
losses were zero at the injector wellhead for the West and East PSUs, demonstrating 
high technical efficiency.  

For the East eductor, both mother and polymer solutions showed a very high level 
of viscosity losses. The viscosity loss for the mother solution and at the injector 
wellhead were 36 and 45%, respectively. These losses are unrelated to dissolving 
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quality, but instead is due to oxidative (chemical) degradation caused by dissolved 
oxygen and divalent iron reactions. As shown in Figure 4.1, the dissolved oxygen 
was introduced by air injection associated with the polymer powder supply. At the 
first mixing step, the mother solution had 2-3 ppm dissolved oxygen. Due to the 
absence of oxygen in the process water and the polymer dilution process, the oxygen 
level at the wellhead decreased to 1.5 ppm (Table 4.1). This oxygen content was 
higher than the acceptable range - by roughly 10 times. The final viscosity loss was 
about 45% or equivalent to 25% loss of polymer concentration. The primary 
oxidative degradation location in the system is the dispersion tank. Subsequently, 
during transit from the injection unit to the wellhead, it additionally loses about 10% 
more viscosity. We assume that this process continues in the tubing before entering 
the formation. As will be shown later, after the polymer solution enters the 
formation, all oxygen will be consumed by the surrounding rock very quickly and 
provide subsequent chemical stability. But still, severe degradation at the surface 
affects project economics and feasibility. 
 
Table 4.5 — The viscosity measurement results at different injection units 

Polymer 
injection 

unit 

Lab viscosity, cp Field viscosity, cp Viscosity loss, % Polymer 
concentration 

loss, % 
Mother 
solution 

Injector 
wellhead 

Mother 
solution 

Injector 
wellhead 

Mother 
solution 

Injector 
wellhead 

West PSU 680 20 652 20 4 0 0 
East PSU 1 980 23 1 850 23 14 0 0 

East eductor 240 38 154 21 36 45 25% 
The viscosity of the polymer solution measured at 7.34s-1 T=25ºC 

 
The polymer rheology and concentration loss. Figure 4.6 shows polymer 

concentration and viscosity relationship for two types of used polymers in the field. 
For our case, polymer viscosity roughly depended on the square of its concentration. 
This figure analysis reveals that 45% viscosity loss for the East eductor polymer 
injection unit corresponds to 25% equivalent polymer concentration loss. 

Several views exist on how to solve this problem. They include: (1) 
chemical/mechanical treatment of the process water to remove all iron from the 
solution [162], (2) chemical additives such as free-radical scavengers or pH 
adjustment [89; 163], (3) keeping dissolved oxygen at an undetectable or acceptable 
level (as close to zero) [31], and (4) no action [20] as in our example of the East 
eductor unit.  

The viscosity measurement results at different injection units (Table 4.5) reveal 
that removing all oxygen from the system is the feasible and effective way to provide 
the chemical stability of the solution. Thus, we suggest modifying the East eductor 
injection unit to ensure an undetectable or acceptable oxygen level that will save 
25% cost of chemicals. 
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Figure 4.6 — Polymer solution viscosities at different concentrations 

 
Effect of the formation on the polymer stability. Fluid sampling for Producer 

XX87 and injection of polymer solution at the wellhead of Well XX37 occurred on 
30th April 2021, as described above in the section “A sampling of producer fluid”. 
The typical surface temperature was +20ºC during the test. As shown in Figure 4.5, 
samples from Producer XX87 were collected after polymer breakthrough and that 
polymer solution propagated over 400 m through the reservoir from Injector XX37. 
Additionally, the dissolved oxygen level was measured at the wellhead of Polymer 
Injection Well XX37 and the last four produced samples (# 3, 4, 5, 6) using 
CHEMets® colorimetric tests. The viscosity and oxygen measurement results are 
shown in Figure 4.7 and Table 4.6. Note in Table 4.6 that after the first listing (the 
original sample that was injected), the samples are listed in reverse chronological 
order of collection—i.e., Sample 6 was collected last from the formation, and 
Sample 1 was collected first in the tubing). Test results show that injected solution 
from Well XX37 had roughly 1.5 ppm (i.e., between 1 and 2 ppm) dissolved oxygen 
content and viscosity of 25.1 cp with power law index of 0.763. The first three 
produced samples (originating closest to the surface) contained 0.2 ppm dissolved 
oxygen and different degrees of viscosity loss relative to the injected (25-50%). The 
last three samples show undetectable dissolved oxygen levels (less than 0.025 ppm 
or 25 ppb) and only modest viscosity loss (15%), with a power law index close to 
that of the injected solution.. We presume that significant degradation was seen for 
the first collected samples because oxygen (air) was introduced into the production 
well during the well repair work. The gradual decrease in the level of degradation 
(i.e., increase in viscosity) with time reflected flushing this oxygen out of the system. 
These findings indicate that injected oxygen in the polymer solution (that transported 
400 m through the Kalamkas reservoir) was consumed by the surrounding reservoir 
rock provided chemical (oxidative) stability of the solution (due to iron-containing 
minerals up to 2-4% [31]). The small viscosity loss (from 25 to 21 cp) was probably 
associated with oxidative viscosity decrease in the wellbore of the Injection Well 
XX37. (Viscosity was measured at the wellhead, then solution passed through the 
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tubing about 30 min before entering the formation. This time was sufficient to 
degrade the solution viscosity by 15%.) 

 

 
Figure 4.7 — Rheological curve analysis of injected (Well XX37) and produced (Well XX87) 

polymer solutions  
 

Table 4.6 — Rheology measurements of the injected and produced polymer solution from Injector 
XX37 and Producer XX87 

Well 

Produce
d 

Volume, 
m3 

Dissolved O2 
concentration, 

ppm 

The location of the 
collected sample 

Viscosity at 7.34 
s-1, cp 

The power law 
index (n), 

dimensionless1 

Injector XX37  1.5 Injected 25.1 1-0.237 = 0.763 
Producer XX87 

No. 6 6.5 0 Formation 21.0 1-0.162 = 0.838 

Producer XX87 
No. 5 4.4 0 between tubing and 

perforation 21.3 1-0.147 = 0.853 

Producer XX87 
No. 4 3.6 0 between tubing and 

perforation 21.3 1-0.141 = 0.859 

Producer XX87 
No. 3 3.3 0.2 between tubing and 

perforation 19.2 1-0.128 = 0.872 

Producer XX87 
No. 2 2.9 N/A between tubing and 

perforation 14.9 1-0.070 = 0.930 

Producer XX87 
No. 1 2.0 N/A downhole tubing 13.1 1-0.035 = 0.965 

1(API RP 63 1990) 
 

4.4 Chapter Conclusions 
 

As mentioned earlier, the very large investment associated with the polymer bank 
during a polymer flood necessitates a determination that the polymer is not 
substantially degraded during the process of preparation and injection. This chapter 
provides a methodology for assessing chemical degradation in the field, and the 
methodology is demonstrated for the field application at the Kalamkas. This study 
indicates the possibility of optimizing operational expenditure and increasing the 
economic efficiency of the polymer flood project operated by an eductor type unit. 
Consistent with [32], 200-400 ppb oxygen in polymer preparation and injection 
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process does not degrade polymer viscosity. In addition, this chapter provides 
additional field-based support that dissolved oxygen of the injected polymer solution 
is effectively consumed by surrounding rock and provides further chemical stability 
in the formation.  
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5. AN UNCONVENTIONAL APPROACH TO MODEL A POLYMER 
FLOOD 

5.1 Introduction 
 

During the operation of polymer projects, well monitoring, dedicated field studies, 
lab analysis, inter-well tracer tests, and well tests (step-rate and pressure fall-off 
tests) were conducted. The results of these studies were used to build a conceptual 
polymer flood model. An unconventional approach to model the polymer flood will 
be shown in the successful example of the West pilot. To date, we are working on 
the East polymer model, and the results are not yet complete. 

5.2 Methodology 
 
The overall approach to building the reservoir model is schematically shown in 

Figure 5.1. 
 

 
Figure 5.1 — Overall approach to build a reservoir model for a polymer flood 

 
1. Geological modeling consists of structural modeling, creating a 3D grid, 

lithology and facies modeling, petrophysical modeling, oil reserves estimation, 
and finally initialization of the reservoir model. Grid dimensions were 50 m 
length, 50 m width, and 0.2 m height. Block V sector model included 
1 439 340 cells (149x69x140), illustrated in Figure 5.2. 

Geological modelling PVT & SCAL & Polymer Props

Field Data Processing
(Q & P)

Events and well tests analysis

History Matching

Forecast various 
scenarios

Time, hours

Diagnostic plot (log-log)

P
re

ss
u
re

 d
ro

p
, p

si

Water flood (2019)
Polymer flood (2020)



72 
 

2. Laboratory experimental (PVT, SCAL) results were systematically analyzed 
and existing models updated (Figure 5.3 and Figure 5.4).  

3. Production and injection history were systematically investigated by analysis 
of production and injection logging tests (PLT&ILT). To accurately history-
match reservoir performance, the upper reservoir was considered out-of-zone 
injection (Figure 5.5). 

4. Special core flooding experiments were conducted to estimate polymer 
rheology, retention, and mechanical degradation - providing key properties for 
the polymer flood and considered during setting polymer properties in the 
“.data” file.  

5. For characterizing the production wells, we extensively analyzed well 
stimulation history (including hydraulic fracturing), well tests (pressure fall-
off & step-rate tests), and inter-well tracer test results to build fractures or 
fracture-like features with proper orientation and configuration.  

6. Water and polymer flood history matching emphasizing bottom-hole pressures 
(BHP).  

7. Sensitivity analysis and forecast of various scenarios were performed to study 
the impact of polymer properties (viscosity, slug size, injection rate) on net 
present value – NPV. 

8. We developed a correlation equation to estimate incremental oil production 
based on geological properties (layering, effective formation height, net to 
gross – NTG) and reservoir dynamic parameters (productivity index variation, 
depletion intensity, water cut). 

 

 
Figure 5.2 — Block V sector model which includes the West polymer flood pilot 

 

Figure legend
Wells Polymer flood area
Polymer injectors
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Figure 5.3 — Relative permeability curves matched with a historical watercut 

 
Relative permeabilities analytically matched watercut history using a Buckley-

Leverett function. As shown in Figure 5.3, the actual watercut (black curve) is 
approximated well using a theoretical fractional water function (green curve). This 
approach saved significant time and resources. 

 

 
Figure 5.4 — Oil PVT properties used in the model 

 
After a detailed analysis of all the formation samples for the reservoir, a PVT 

model was built in PVTi software using the oil and gas component compositions. 
 

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

kr
w

, k
ro

, f
w

Sw

fw-history

fw-model

Krow

Krw



74 
 

 
Figure 5.5 — Target reservoir and synthetic upper reservoir (considered out-of-zone injection) 

 
The target reservoir model included 29 operated injection wells, with 15 of them 

registering out-of-zone injection at specific times. Total ineffective injection over 40 
years was estimated at 1.5 million m3 water. Our model considered these events to 
reproduce the real reservoir development history. 

 

5.3 Polymer flood observed key aspects 
 

Polymer Rheology in Porous Media or Resistance Factor. Resistance factor is 
defined as a ratio of injected water to polymer solution mobilities. Some researchers 
[150; 164; 165; 166] claimed that HPAM (the same type of polymer used in the 
Kalamkas project) solutions reduced mobility much more than expected from the 
solution viscosity. They suggested that the polymer substantially decreased 
permeability due to polymer adsorption and/or mechanical entrapment. This effect 
was often achieved during flooding experiments on short cores using freshly 
prepared HPAM solution. This permeability reduction behavior is considered in 
most modern simulators (e.g., Eclipse, tnavigator), including the model used for this 
study. In contrast, Seright et al. (2011) [141] demonstrated that this mechanism is 
not practically achievable in field applications because HPAM high molecular 
species (which were responsible for permeability reduction) are filtered or destroyed 
at the injection sandface and will not propagate far into the reservoir. Consequently, 
deep in the formation where permeability >100 md, polymer solution are expected 
to provide mobility reduction proportional to the low shear rate viscosity measured 
in a rheometer. Thus, in a high-permeability formation like the Kalamkas field, 
polymer solution resistance factor or apparent viscosity in porous media is best 
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represented by low-shear-rate viscosity measurements. In contrast, if polymer 
retention truly caused low mobility and permeability reduction, BHP values in 
polymer injectors would increase to high values. This effect has been demonstrated 
in our reservoir model, and the results show high BHP values were never observed 
in the Kalamkas field (Table 5.1). Thus, we excluded permeability reduction as a 
mechanism to provide more mobility reduction than expected from rheology 
measurements.  

 
Table 5.1 — Analysis of the effect of permeability reduction on the polymer injector BHP 

Case Permeability reduction  Injector BHP, 
bar 

History matching 
quality, +/- % 

0 (history)  125.9  
1 1 123.6 -1.9 
2 1.1 132.0 4.6 
3 1.2 136.3 7.6 
5 1.4 145.4 13.4 
6 1.8 165.1 23.7 
7 2 175.6 28.3 
8 3 226.2 44.3 
9 4 279.9 55.0 

 
Residual Resistance Factor – RRF. Residual resistance factor is defined as a ratio 

of water mobility before versus after a polymer flood. As mentioned in the 
Introduction section, the original four East pilot  polymer injectors were returned to 
water injection after a long period of polymer flooding. The pilot is an infilled 5-
spot with an average well spacing of 200-250 m, including 9 producers (Figure 5.6a). 
The producers' post-polymer water injection performance has been extensively 
analyzed.  

After the pilot started, liquid production of all producers were increased by 
changing downhole pumps. This action led to the first oil rate to increase, then 
stabilization, and later decline between March 2015 and February 2016. The 
polymer response started in August 2016 at 30% PV injected. This effect continued 
until the end of the project. As a result, the watercut decreased from 91% to 86%, 
and the oil rate increased by ~60%. When the polymer bank size reached 50% PV, 
injectors were returned to waterflooding. As shown in Figure 5.6b, water injection 
led to a sharp (during the first month) water-cut increase from 86% to 91%, and oil 
rate decreased by at least 60% - i.e., oil production returned to the previous level 
before the polymer response. 

As demonstrated in this field case for the Kalamkas high permeability conditions 
(>500 md), residual resistance factor is not significantly different from unity. It 
supports our conservative view for polymer-flood design, which assumes that 
resistance factor was approximated well using low-shear-rate viscosity 
measurements and no permeability reduction. Thus, we suggest setting RRF in the 
simulator at 1. But even if the model assumes no permeability reduction, it could not 
reproduce the performance during post-polymer water injection—because of 
viscous fingering of the chase water through the polymer bank in the high permeable 
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path. This effect has been experimentally proved by Seright (2017) [52] and 
illustrated in Figure 5.7.  

 

 
(a)     (b) 

Figure 5.6 — Polymer flood pilot area (a) and production response (b) 
 

 
Figure 5.7 — Viscous fingering during water injection after polymer flood [52] 

 
The simulation scenario associated with a post-polymer chase waterflood (WF) is 

shown in Figure 5.8. The blue curve show projections from the model during post-
polymer chase water injection, while the green curve shows the projection for 
continued polymer injection. In this model, the switch from polymer to water 
injection began at the start of the blue curve (Feb. 2020). These projections suggest 
that a post-polymer waterflood will maintain oil rates and water cuts that are 
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significantly more desirable than associated with waterflooding alone (e.g., the red 
dashed curve). Additionally, the difference in oil production between continuing 
polymer flood (green curve) and returning to water injection (blue curve) is only 
9.2%. Clearly, an economically rational scenario is a chase waterflood. However, as 
the East pilot demonstrated, oil rates are actually expected to return to the water 
flood base case after returning to water injection. Thus, considering the model's 
ability and real polymer flood physics, we suggest an accurate forecast for water 
chase flood rapidly returns to the waterflood base case line (red dashed curve).  

 

 
Figure 5.8 — Post polymer waterflood oil production response in the model 

 
Inaccessible pore volume - IAPV. Considering uncertainties in laboratory 

studies to date and the high permeability condition of the Kalamkas field, we suggest 
IAPV should be set as zero during simulations. Previous works [167; 168] 
demonstrated that is approach is appropriately conservative, and also most likely is 
correct/true. Simulation studies revealed that BHP and watercut response are not 
sensitive to IAPV values from 5% to 30%.  

Polymer retention. Laboratory measurements of polymer retention were 
performed using a core plug from the target polymer-flooded reservoir. The core 
plug was chosen to represent the average permeability of the target reservoir. The 
rock absolute permeability was 380 md and porosity was 31.3%. The plug sample 
was cleaned with toluene, then saturated with formation water from the target 
reservoir., (This water was cleaned/filtered to remove oxidized products and 
suspended solids). The Kalamkas formation water contains 4 600-ppm calcium, 2 
200-ppm magnesium, and has a total salinity of 98 700-ppm TDS. This water was 
used to prepare polymer solutions during the field polymer flood. The polymer used 
in the field and in this lab test was SNF Superpusher K-129, which is a partially 
hydrolyzed polyacrylamide (HPAM) with a molecular weight of approximately 14 
million g/mol and a hydrolysis degree of approximately 17%. We used 1000, 1500, 
2000 ppm HPAM solutions in our retention test.  

After preparation and saturation with brine, we measured residual oil saturation, 
and then injected polymer solutions at a fixed rate (1 ft/D) at the reservoir 
temperature of 40ºC. Polymer concentrations were measured using the bleach 
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method [139]. The retention of each polymer slug injected was calculated using 
Equation (5.1), as recommended in [139]:  

 
𝑅𝑅 =  𝑊𝑊×𝐶𝐶𝐶𝐶−𝑌𝑌×𝐶𝐶𝐶𝐶

𝑀𝑀
   (5.1) 

 
where: R = retention, µg/g; W = weight of polymer injected, g; Ci = concentration 

of polymer solution injected, unit fraction; Y = weight of fluid produced and 
analyzed, g; Cp = concentration of polymer in the produced sample, unit fraction; M 
= bulk mass of the core, g. The retention test results are shown in Figure 5.9.  

 

 
Figure 5.9 — Polymer retention test result 

 
Polymer rheology. Polymer solution rheology was measured using a high-

precision rheometer (Anton Paar MCR 502) at shear rates from 0-500 1/s, and 
reservoir temperature (40°C). As a solvent, we used formation water sampled from 
the field, which is used to prepare polymer solutions. Figure 5.10 plots rheology for 
500-5000-ppm HPAM concentrations.  

 

 
Figure 5.10 — Superpusher K-129 polymer rheology at reservoir conditions 
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Polymer induced fractures and their impact on the flood. Sagyndikov et al. 
(2022) [46] provided Kalamkas field evidence to clarify the utility of near-wellbore 
fractures to promote injectivity and mitigate mechanical degradation of HPAM 
solutions. Well tests (step rate and pressure fall-off test) indicated that fractures were 
not open during water injection before polymer injection. In contrast, open fractures 
were confirmed during polymer injection using well tests and comparison of actual 
injectivities versus those calculated using the Darcy radial flow equation coupled 
with laboratory measurements of HPAM rheology in Kalamkas cores. In addition, 
viscosity measurements of sampled solutions from polymer injectors showed the 
absence of mechanical degradation. This finding provided further confirmation that 
polymer injection occurred above the formation parting pressure and that the 
injection area associated with the fracture was large enough to ensure the stability of 
the solution. Thus our model assumed no mechanical degradation of polymer 
solutions and fracture flow near-wellbore. We used pressure fall-off test and inter-
well test results to set fracture conductivity, half-length, (Figure 3.9, Table 3.7) and 
orientation (Figure 5.11, Figure 5.12). 

 

 
Figure 5.11 — Setting fracture configuration to the model based on well tests, Injector XX41 
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Figure 5.12 — Setting fracture configuration to the model based on well tests, Injector XX49 
 
Injector Bottom-hole pressure (BHP) history matching. As shown on the left 

sides of Figure 5.13 and Figure 5.14, simulated BHP of the polymer injectors without 
fracture-like features shows a sharp increase, but this behavior is not observed in the 
field. In the previous section “Polymer induced fractures and their impact on the 
flooding”, we demonstrated how to set fracture length and orientation. We used 
permeability as the main parameter to match the BHP. As a result, we obtained good 
history matching of BHP in polymer injectors, as shown on the right sides of Figure 
5.13 and Figure 5.14.  

 

 
Figure 5.13 — BHP history matching for the Injector XX41 (left side: without fractures; right 

side: with fractures) 
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Figure 5.14 — BHP history matching for the Injector XX49 (left side: without fractures; right 

side: with fractures) 
 

5.4 Results and discussions 
 
Reservoir dynamic modeling shows satisfactory quality during the entire polymer 

flood period. Moreover, main parameters, such as liquid/oil rates and watercut, show 
minimum discrepancy. For example, at the end of the simulation period (Jan. 2020), 
the convergence on the oil rate was 99%, on the liquid rate – 98%, and watercut 
matches the actual 84% (Figure 5.15). 
 

 
Figure 5.15 — Reservoir simulation history matching results 

 
Model viability. We compared production forecast data and actual results for the 

2020-2021 period to assess model viability (Figure 5.16). The forecast shows good 
convergence.  
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Figure 5.16 — Model forecast viability analysis 

 
Optimization scenarios. After finishing the history matching work, we 

performed various simulation scenarios with different polymer concentrations, slug 
sizes, and injection rates. The forecast period was 10 years for all options, i.e., until 
2029 (Figure 5.17, Figure 5.18, Figure 5.19). As shown in Figure 5.17, increasing 
polymer concentration (or viscosity) increases incremental oil production. However, 
extra expenditures related to additional polymer concentration lead to decreased net 
present value (NPV). In contrast, increasing the injection rate at a constant polymer 
concentration shows the same effect (Figure 5.18). In another case (Figure 5.19), 
assuming constant polymer consumption and making concentration & injection rate 
combination as variables, we can see that injection rate of 700-800 m3/d and polymer 
concentration of 1.3-1.5 kg/sm3 are the optimum ranges in terms of incremental oil 
production and NPV.  

We also performed a simulation scenario with the optimum design (injection rate 
& polymer concentration) until ~110% pore volume (PV) was injected (Figure 5.20). 
This scenario aims to show an economically feasible project life, with at least 60% 
of PV injected when the oil price is 40$ USD per one barrel (the most pessimistic 
case). In contrast, the most optimistic view (90$/bbl) shows close to 70% of PV 
injected. Therefore, consistent with [116] and [52], our simulation studies reveal that 
polymer flood at oil price volatility is a long-term project that extends the field's 
economically feasible lifetime and enhances oil recovery. 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

01.14 09.16 06.19 03.22 12.24 09.27

O
il 

pr
od

uc
tio

n 
ra

te
, t

on
ne

s

Date, MM.YY

Model History Actual 2020-2021 Forecast



83 
 

 
Figure 5.17 — Projected effect of polymer concentration 

 

 
Figure 5.18 — Projected effect of injection rate 

 

 
Figure 5.19 — Projected effect of polymer concentration and injection rate 
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Figure 5.20 — Projected effect of oil price 

 
Analytical equation to forecast a polymer flood. It is well known that the 

process of geological modeling and reservoir simulation requires enormous 
resources, including time, software, and electronic computing capacities. 
Additionally, the accuracy of the modeling depends on initial information and the 
quality of history matching. Therefore, to save time and accelerate the process of 
making a decision, we created five new synthetic areas (Figure 5.21) with different 
geological properties (net-to-gross, layering, formation height) and current reservoir 
conditions (productivity indexes variation, depletion intensity, watercut). The 
simulation results for six areas (existing pilot and 5 new) are shown in Figure 5.22, 
and the derived equation is shown in Equation (5.2). Equation (5.2) assumes that 
polymer concentration and injection rate are the same as in pilot wells pattern (XX41 
and XX49).  

 

 
Figure 5.21 — Synthetic areas to simulate polymer flood at different geological and reservoir 

conditions 
 

-600

-100

400

900

1 400

1 900

0 20 40 60 80 100 120

N
et

 P
re

se
nt

 V
al

ue
, m

ill
io

n 
K

ZT

Polymer solution PV injected, %

 NPV at 40 $/bbl  NPV at 50 $/bbl  NPV at 60 $/bbl
 NPV at 70 $/bbl  NPV at 80 $/bbl  NPV at 90 $/bbl

12

3
4

5
6

1 – XX41-XX49

2 – XX34-XX41

3 – XX40D-XX41

4 – XX40D-XX48

5 – XX57-XX58

6 – XX59-XX33



85 
 

 
Figure 5.22 — Analytical equation to forecast polymer flooding 

 

𝐼𝐼𝐼𝐼𝐼𝐼 = (4862.7 ∗ 𝑲𝑲𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 6791 ∗ 𝑯𝑯𝑜𝑜𝑜𝑜𝑜𝑜 − 246827 ∗ 𝑵𝑵𝑵𝑵𝑵𝑵 + 151262 ∗ 𝑫𝑫𝑫𝑫 + 427462 ∗ 𝑽𝑽𝑷𝑷𝑷𝑷 +
2.50Е + 15 ∗ 𝒆𝒆𝒆𝒆𝒆𝒆(−2.63Е + 01 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊)) + 28777 ÷ 6   (5.2) 

 

where: IOP = incremental oil production for 5 years, thousand tonnes; K layer = 
formation layering or compartmentalization index, dim.; Hoil = oil formation height, 
m; NTG = net-to-gross, fraction; DI = depletion intensity (defined as a difference 
between depletion of recoverable reserves and watercut), fraction; V pi = 
productivity indexes variation, dim.; WCT = watercut, fraction.  

Comparison of the actual (field-observed) oil production with predictions from 
Eq. 5.2 matched reasonably well for most wells (shown by the blue circles in Figure 
5.22). In two wells (the red circles in Figure 5.22), the match was not as good. This 
equation allows easy predictions in place of the expense and effort required for 
simulation. Of course, the development of empirical relations like Eq. 5.2 must be 
obtained individually for different reservoirs. 
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5.5 Chapter Conclusions 
 
1. An unconventional method for modeling a polymer flood was developed that 

accounts for more realistic conditions that occur during polymer injection into 
vertical wells. These conditions include (a) fractured injection wells, (b) no 
mechanical degradation of injected polymer solutions, (c) no significant 
permeability reduction caused by the injected polymer, and (d) no polymer 
inaccessible pore volume. This model was applied in the Kalamkas oil field. 

2. The model focuses on history matching of bottom-hole injection pressures and 
forecasts far better than conventional models that assume no fractures are 
present. 

3. The model correctly predicts very rapid deterioration of water cuts and oil 
production rates after switching from polymer back to water injection—better 
than conventional models that assume a significant permeability reduction by 
the polymer. 

4. An empirical equation matched oil production reasonably well for most wells 
in six areas of the Kalamkas oil field. This equation allows easy predictions in 
place of the expense and effort required for simulation. 

5. Given oil-price volatility, feasibility studies reveal that our polymer flood 
should be a long-term project that extends the field's economic lifetime and 
enhances oil recovery. 
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6. CONCLUSIONS 
 

The goal of this Ph.D. thesis was to investigate polymer flood at the Kalamkas 
field to develop a systematic approach for improving technology. To achieve this, 
we analyzed Kalamkas oilfield development features and current stage of the 
polymer flood pilot, reviewed recent worldwide polymer EOR projects focusing on 
the Kalamkas field polymer flood aspects, assessed polyacrylamide solution 
chemical and mechanical stability, developed a novel method for the field 
assessment of polymer degradation, experimentally and numerically studied 
Kalamkas polymer flood implementation, and conducted project feasibility studies. 

A field review shows that the Kalamkas oil reservoirs have a high layered 
permeability contrast and unfavorable water-oil mobility ratio, which jeopardizes 
uniform depletion and oil recovery. In view of the low reservoir temperature, 
elevated mobility ratio, and high formation permeability, it was recognized that the 
Kalamkas field has considerable potential for enhancing oil production by polymer 
flooding. Recent tertiary pilot results show positive performances. However, it still 
requires further investigation to provide improvements. 

A comprehensive literature review shows that for the polymer flood project 
dissolved oxygen level should be as close to zero as practical – certainly less than 
200 parts per billion. This technology can be applied in formations with any water 
salinity. However, practical considerations favor using the least saline water that is 
available. Field experience, as well as laboratory and theory, consistently reveal that 
the polymer bank size should be as large as practical (typically ~1 pore volume). 
Once the injection is switched from polymer back to water injection, water cuts will 
quickly rise to high values. Other chemical EOR such as ASP/SP flooding at the 
Kalamkas conditions will be too risky relative to polymer flood, especially in terms 
on-site production/injection problems and high cost of chemicals & water treatment. 
Using horizontal wells can greatly enhance polymer injectivity and control injection 
above the formation parting pressure. 

Dedicated field polymer stability studies provides field evidence to clarify the 
utility of near wellbore fractures to promote injectivity and mitigate mechanical 
degradation of HPAM solutions. Also, we provided a new sampling methodology 
that demonstrated minimum mechanical and oxidative degradation under the 
Kalamkas field circumstances, whereas previous sampling methods may have 
provided overly pessimistic indications of HPAM stability. Also, the research 
provides additional field-based support that the dissolved oxygen of the injected 
polymer solution is effectively consumed by surrounding rock and provides further 
chemical stability in the Kalamkas formation. Based on field studies, we 
recommended modifying the East eductor injection unit to ensure an undetectable or 
acceptable oxygen level that will save 25% cost of chemicals. 

An unconventional method for modeling a polymer flood was developed that 
accounts for more realistic conditions that occur during polymer injection into 
vertical wells. These conditions include (a) fractured injection wells, (b) no 
mechanical degradation of injected polymer solutions, (c) no significant 
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permeability reduction caused by the injected polymer, and (d) no polymer 
inaccessible pore volume. This model was applied in the Kalamkas oil field. Also, 
we developed an empirical equation for analytical forecasting of polymer flood 
performance based on geological parameters and reservoir dynamics. This analytical 
tool can be used for pattern selection and ranking during full field deployment.  

Finally, feasibility studies show that at given oil-price volatility, the Kalamkas 
polymer flood should be a long-term project that extends the field's economic 
lifetime and enhances oil recovery.  
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