AP14869972 – Разработка и адаптация методов компьютерного зрения и машинного обучения для решения задач точного земледелия с применением беспилотных летательных систем

Сроки реализации: 2022-2024 гг.

Цель проекта:

Разработать и адаптировать методы компьютерного зрения и машинного обучения для решения задач точного земледелия путем обработки данных и изображений, полученных с помощью беспилотных летательных систем.

Задачи проекта:

  1. Разработка многофункциональной программно-аппаратной системы по сбору и предобработке изображений и данных с целью решения задач точного земледелия;
  2. Формирование опытной площадки по воспроизведению негативных факторов, влияющих на процессы точного земледелия;
  3. Формирование наборов данных для решения задач точного земледелия с применение машинного обучения и БПЛА;
  4. Разработка методов идентификации и классификации негативных факторов c целью оценки их влияния на развитие полезных растений;
  5. Экспериментальная оценка разработанных методов и формирование отчетности.

Результаты:

  1. Разработан прототип многофункциональной программно-аппаратной системы по сбору и предобработке изображений и данных с целью решения задач точного земледелия. Прототип включает беспилотную летательную платформу с элементами подвеса, включающую систему точного позицирования грузоподьемностью до 1 кг и программное обеспечение по обработке снимков, получаемых с помощью данной платформы. ПО включает в разной степени готовности функции чтения данных(загрузки снимков разных спектральных диапазонов), функции предобработки изображений и расчета спектральных индексов, функции тренировки моделей машинного обучения, функции формирования карты.
  2. Создано четыре опытных участка площадью 135 м2 каждый, в сумме участки составляют 540 м2. На участках посажена сахарная свекла. Негативные факторы:
    1. Первый участок реализует собой дефицит удобрений в почве;
    2. Второй участок реализует отсутствие обработки от сорняков;
    3. Третий участок реализует дефицит влаги (полива);
    4. Четвертый участок содержит все три предыдущих негативных фактора.
  3. Размечено 300+ фотографий соевого поля на первом этапе роста. На каждом фото индивидуально выделяются сорные растения и полезная культура (соя). Сорных растений 9-10 видов (Amaránthus retrofléxus, Convolvulus arvensis, Setaria glauca, Xanthium strumarium, Cirsium arvense, Echinochloa crusgalli, Hibiscus trionum, Abutilon theophrasti, Chenopodium album, Apera spica-venti), полезная культура одна (Glycine max).
  4. Разработан прототип метода идентификации сорных растений нескольких видов. Проводятся работы по повышению точности разработанных методов и их экспериментальной апробации.

Публикации:

  1. Mukhamediev, R.; Amirgaliyev, Y.; Kuchin, Y.; Aubakirov, M.; Terekhov, A.; Merembayev, T.; Yelis, M.; Zaitceva, E.; Levashenko, V.; Popova, Y.; Symagulov, A.; Tabynbayeva, L. Operational Mapping of Salinization Areas in Agricultural Fields Using Machine Learning Models Based on Low-Altitude Multispectral Images. Drones 2023, 7, 357. https://doi.org/10.3390/drones7060357(Scopus: Q1, 75%, WoS: Q2, IF:4.8)
  2. Zaitseva, E., Levashenko, V., Mukhamediev, R., Brinzei, N., Kovalenko, A., & Symagulov, A. (2023). Review of Reliability Assessment Methods of Drone Swarm (Fleet) and a New Importance Evaluation Based Method of Drone Swarm Structure Analysis. Mathematics, 11(11), 2551. https://www.mdpi.com/2227-7390/11/11/2551
  3. Mukhamediev R. I. Yakunin, K., Aubakirov, M., Assanov, I., Kuchin, Y., Symagulov, A., Levashenko V., Zatceva E., Sokolov D., Amirgaliyev, Y. . Coverage path planning optimization of heterogeneous UAVs group for precision agriculture //IEEE Access. – 2023. – Т. 11. – №. 15. – С. 5789-5803, doi: 10.1109/ACCESS.2023.3235207, https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10011226 (Scopus Quartile: Q1, 90%, JCR Category Quartile: Q2, WoS IF=3.476)
  4. Zaitseva, E., Levashenko, V., Brinzei, N., Kovalenko, A., Yelis, M., Gopejenko, V., & Mukhamediev, R. (2023). Reliability Assessment of UAV Fleets. In Emerging Networking in the Digital Transformation Age: Approaches, Protocols, Platforms, Best Practices, and Energy Efficiency(pp. 335-357). Cham: Springer Nature Switzerland. 
  5. Mukhamediev Ravil, Merembayev Timur, Symagulov Adilkhan, Kuchin Yan, Jan Rabcan. Determination of soil salinity using a UAV// The 21st INTERNATIONAL CONFERENCE INFORMATION TECHNOLOGIES AND MANAGEMENT 2023, April 20-21, 2023, ISMA University of Applied Sciences, Riga, Latvia
  6. Symagulov Adilkhan, Kuchin Yan, Jan Rabcan, Nadezhda Nikitina, Ravil Mukhamedyev, Laila Tabynbaeva. Unmanned aerial platform prototype with a multifunctional hardware and software system for acquiring and processing images and data for precision agriculture// The 21st INTERNATIONAL CONFERENCE INFORMATION TECHNOLOGIES AND MANAGEMENT 2023, April 20-21, 2023, ISMA University of Applied Sciences, Riga, Latvia
  7. Symagulov Adilkhan, Kuchin Yan, Jan Rabcan, Laila Tabynbaeva. Using UAVs and machine learning to generate plotted data sets for precision farming// The 21st INTERNATIONAL CONFERENCE INFORMATION TECHNOLOGIES AND MANAGEMENT 2023, April 20-21, 2023, ISMA University of Applied Sciences, Riga, Latvia

Научные проекты университета

Наверх

Произошла ошибка!

Попробуйте заполнить поля правильно.

Произошла ошибка!

Превышен максимальный лимит по размеру файла.

Ваши данные были успешно отправлены!

Мы свяжемся с Вами в ближайшее время.

Ваши данные были успешно отправлены!

На ваш e-mail адрес было отправлено письмо для подтверждения. Пожалуйста не забудьте подтвердить ваш e-mail адрес

Перевод не доступен


Перейти на главную страницу