Version for the visually impaired
24 june 49

BR24992908 "Support system for agricultural crop production optimization via remote monitoring and artificial intelligence methods (Agroscope)"

Relevance

The results of the program will contribute to the development of the agricultural UAV market with an estimated volume of several tens of millions of dollars. Improving the educational level of specialists by introducing the results of the program into the educational process.

Purpose

The emergence of new professions that lie at the intersection of agricultural sciences, data science and robotics

Expected and achieved results

Creation of a system to support agrotechnical measures in crop production based on a set of monitoring systems and artificial intelligence methods to improve the efficiency of feed agriculture

A specification of requirements for the BLP, ground and air hardware and software infrastructure components, image segmentation and classification software, as well as a cartographic system was developed. The requirements for the subsystem of flight route planning were formed, as well as modern methods for determining the phases of crop development and crop yield forecasting were described.

Research team members with their identifiers (Scopus Author ID, Researcher ID, ORCID, if available) and links to relevant profiles

The scientific supervisor is Ravil Mukhamediev

List of publications with links to them

  1. Оксененко А. А. и др. Технические средства дистанционного мониторинга с помощью беспилотных летательных платформ //Известия НАН РК. Серия физико-математическая. – 2024. – №. 3. – С. 152-173.
  2. Mukhamediev R. I. et al. Using Pseudo-Color Maps and Machine Learning Methods to Estimate Long-Term Salinity of Soils //Agronomy. – 2024. – Т. 14. – №. 9. – С. 2103.
  3. Mukhamediev R. et al. Classification of logging data using machine learning algorithms //Applied Sciences. – 2024. – Т. 14. – №. 17. – С. 7779.
  4. Mukhamediev R. I. State-of-the-Art Results with the Fashion-MNIST Dataset //Mathematics. – 2024. – Т. 12. – №. 20. – С. 3174.

Patents

  1. Авторское свидетельство «Программный комплекс для оценки уровня воды в реке Или с использованием алгоритмов машинного обучения на основе оптических данных Sentinel-2» № 42480, Кучин Ян Игоревич, Мухамедиев Равиль Ильгизович, Терехов Алексей Геннадьевич, Сагатдинова Гульшат Наилевна, Сымагулов Адилхан, Кульдеев Нұрсұлтан Ержанұлы, Сағынұлы Санжар
 Авторское свидетельство «Скрипт PlanMaker для автоматизированного создания полётных миссий для беспилотных летательных аппаратов (БПЛА) с совместимостью под программу QgroundControl», № 51150, Құсайын Диас Русланұлы, Мухамедиев Равиль Ильгизович, Сымагулов Адилхан, Кучин Ян Игоревич, Еримбетова Айгерим Сембековна
Back to top

An error has occurred!

Try to fill in the fields correctly.

An error has occurred!

Exceeded maximum file size limit.

Your data was successfully sent!

We will contact you shortly.

Your data was successfully sent!

A confirmation email was sent to your e-mail address. Please do not forget to confirm your e-mail address.

Translation unavailable


Go to main page